
Mitigating deep double descent by concatenating inputs

John Chen 1 Qihan Wang 1 Anastasios Kyrillidis 1

Abstract
The double descent curve is one of the most in-
triguing properties of deep neural networks. It
contrasts the classical bias-variance curve with
the behavior of modern neural networks, occur-
ring where the number of samples nears the num-
ber of parameters. In this work, we explore the
connection between the double descent phenom-
ena and the number of samples in the deep neu-
ral network setting. In particular, we propose a
construction which augments the existing dataset
by artificially increasing the number of samples.
This construction empirically mitigates the double
descent curve in this setting. We reproduce ex-
isting work on deep double descent, and observe
a smooth descent into the overparameterized re-
gion for our construction. This occurs both with
respect to the model size, and with respect to the
number epochs.

1. Introduction
Underparameterization and overparameterization are at the
heart of understanding modern neural networks. The tra-
ditional notion of underparameterization and overparame-
terization led to the classic U-shaped generalization error
curve (Hastie et al., 2001; Geman et al., 1992), where gen-
eralization would worsen when the model had either too
few (underparameterized) or too many parameters (overpa-
rameterized). Correspondingly, it was expected that an un-
derparameterized model would underfit and fail to identify
more complex and informative patterns, and an overparam-
eterized model would overfit and identify non-informative
patterns.

This view no longer holds for modern neural networks. It is
widely accepted that neural networks are vastly overparam-
eterized, yet generalize well. There is strong evidence that
increasing the number of parameters leads to better gener-
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alization (Zagoruyko and Komodakis, 2016; Huang et al.,
2017; Larsson et al., 2016), and models are often trained to
achieve zero training loss (Salakhutdinov, 2017), while still
improving in generalization error, whereas the traditional
view would suggest overfitting.

To bridge the gap, (Belkin et al., 2018) proposed the double
descent curve, where the underparameterized region fol-
lows the U-shaped curve, and the overparameterized region
smoothly decreases in generalization error, as the number of
parameters increases further. This results in a peak in gen-
eralization error, where a fewer number of samples would
counter-intuitively decrease the error. There has been ex-
tensive experimental evidence of the double descent curve
in deep learning (Nakkiran et al., 2019; Yang et al., 2020),
as well as in models such as random forests, and one layer
neural networks (Belkin et al., 2018; Ba et al., 2020).

One recurring theme in the definition of overparameteriza-
tion and underparameterization lies in the number of neu-
ral network parameters relative to the number of samples
(Belkin et al., 2018; Nakkiran et al., 2019; Ba et al., 2020;
Bibas et al., 2019; Muthukumar et al., 2019; Hastie et al.,
2019). On a high level, a greater number of parameters than
samples is generally considered overparameterization, and
fewer is considered underparameterization.

However, this leads to the question “What is a sample?”
In this paper, we revisit the fundamental underpinnings of
overparameterization and underparameterization, and stress
test when it means to be overparameterized or underpa-
rameterized, through extensive experiments of a cleverly
constructed input. We artificially augment existing datasets
by simply stacking every combination of inputs, and show
the mitigation of the double descent curve in the deep neural
network setting. We humbly hypothesize that in deep neural
networks we can, perhaps, artificially increase the number
of samples without increasing the information contained
in the dataset, and by implicitly changing the classification
pipeline mitigate the double descent curve. In particular, the
narrative of our paper obeys the following:

• We propose a simple construction to artificially aug-
ment existing datasets of size O(n) by stacking inputs
to produce a dataset of size O(n2).

• We demonstrate that the construction has no impact on
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the double descent curve in the linear regression case.

• We show experimentally that those results on double
descent curve do not extend to the case of neural net-
works.

Concretely, we reproduce recent landmark papers, present-
ing the differing behavior with respect to double descent.

2. Related Works
The double descent curve was proposed recently
(Belkin et al., 2018), where the authors define
over/underparameterization as the proportion of pa-
rameters to samples, explained through model capacity.
With more parameters in the overparameterized region,
there is larger “capacity” (i.e., the model class contains
more candidates), and thus may contain better, simpler
models by Occam’s Razor rule. The interpolation region
is suggested to exist when the model capacity is capable
of fitting the data nearly perfectly by overfitting on
non-informative features, resulting in higher test error.

Double descent is also observed in deep neural networks
(Nakkiran et al., 2019), in addition to epoch-wise double de-
scent. Experimentation is amplified by label noise. With the
observation of unimodel variance (Neal et al., 2018), (Yang
et al., 2020) decomposes the risk into bias and variance,
and posits that double descent arises due to the bell-shaped
variance curve rising faster than the bias decreases.

There is substantial theoretical work on double descent, par-
ticularly in the least squares regression setting. (Advani
and Saxe, 2017) analyses this linear setting and proves the
existence of the interpolation region, where the number of
parameters equals the number of samples in the asymptotic
limit. Another work (Hastie et al., 2019) proves that regular-
ization reduces the peak in the interpolation region. (Belkin
et al., 2019) requires only finite samples, where the features
and target be jointly Gaussian. Other papers with similar
setup include (Muthukumar et al., 2019; Bibas et al., 2019;
Mitra, 2019; Mei and Montanari, 2019; Ba et al., 2020;
Nakkiran, 2019; Bartlett et al., 2019; Chen et al., 2020).

3. Methods
We introduce the concatenated inputs construction. This
way the size of a dataset can be artificially, but non-trivially,
increased. This construction can be applied both to the
regression setting and the classification setting. In linear
regression, for given input pairs, (x1, y1), (x2, y2), an aug-
mented dataset can be constructed:{(

[x1, x1], y1+y1

2

)
,
(
[x1, x2], y1+y2

2

)
,(

[x2, x1], y2+y1

2

)
,
(
[x2, x2], y2+y2

2

)}
,

where [α, β] represents concatenation of the input α, β. In
the setting of classification, the process is identical, where
the targets are produced by element-wise addition and then
averaged to sum to 1. The averaging is not strictly necessary
even in the deep neural network classification case, where
the binary cross entropy loss can be used instead of cross
entropy. For test data, we concatenate the same input with
itself, and the target is the original target. This way a dataset
of size O(n) is artificially augmented to size O(n2).

Our reasons for the concatenated inputs construction are as
follows: i) there is limited injection of information or se-
mantic meaning; ii) the number of samples is significantly
increased. For the purposes of understanding underparame-
terization, overparameterization and double descent, such a
construction tries to isolate the definition of a sample.

4. Results
In this section, we reproduce settings from benchmark dou-
ble descent papers, add the concatenated inputs construction
and analyze the findings.

Figure 1. Left: The standard case. Right: The concatenated inputs
construction. Plots of the Test MSE versus the number of samples
(pre-concatenation) for min-norm ridgeless regression, where d =
30. Following (Nakkiran, 2019), inputs are drawn x ∼ N (0, Id),
target y = θx +N (0, σ2), where θ are the parameters, ||θ||2 =
1, σ = 0.1. θ̂ = X†y. As expected, the concatenated inputs
construction does not affect the double descent curve, and the peak
occurs in the exact same location.

4.1. Linear regression

The linear regression setting has been a fruitful testbed
for empirical work in double descent, as well as yielding
substantial theoretical understanding. The concatenated
inputs construction is applied similarly here, however with
different motivation. Namely, we wish to motivate that
the concatenated inputs construction is not expected to add
any information and is therefore not expected to impact the
double descent curve.

We reproduce the linear regression setting from (Nakki-
ran, 2019), given in Figure 1. For the concatenated inputs
construction, we first draw the number of samples before
concatenation and construction of the augmented dataset.
We observe that, by construction, the concatenated inputs
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Figure 2. Top: Loss against number of parameters. Bottom: Error
against number of parameters. In order from left to right: 1) Input
is 32×32 image, label is one-hot vector; 2) Input is 64×32 image
(two of the same image stacked on top of each other), label is one-
hot vector; 3) Input is 64×32 image (two different 32×32 images
stacked on top of each other), label is two-hot vector of values 0.5,
0.5. Cross Entropy loss. Orange/blue is validation/train.

construction does not affect the double descent curve, and
the peak occurs in the exact same location. We also remark
here that it is not surprising, and it is not complicated to
understand why from a theoretical perspective.

4.2. One hidden layer feedforward neural network

We train a feedforward neural network with one hidden
ReLU layer on MNIST, reproducing the setup from (Belkin
et al., 2018). We vary the number of parameters by changing
the size of the hidden layer (see Figure 2).

We observe in the upper-right plot in Figure 2 the double
descent curve is completely removed in the concatenated
inputs construction relative to the other two settings. A
smooth decrease in loss is observed, while there is a clear
double descent in the other cases (upper-left/middle plots
in Figure 2). Furthermore, when concatenating each input
only by itself (upper-middle plot in Figure (2)), the double
descent curve is present almost exactly.This provides evi-
dence that the disappearance of the double descent is not
due to the extra parameters, which originate from the larger
sized inputs. In this setting, it appears that the behavior
of under/overparameterization can be altered by artificially
increasing the number of samples through concatenation.

In addition, the model trained on MNIST and one-hot vec-
tors can be concatenated with itself, with all other param-
eters being zero, to produce a model with two times the
number of hidden units which can be applied to the con-
catenated inputs construction. We consider this setting in
the context of a possible explanation of the interpolation re-
gion, where the number of parameters nears that of samples.
Concretely, it is possible for a neural network with double
the hidden units in the concatenated inputs construction to
recover the double descent curve by learning two smaller,
disconnected networks, where each of the smaller networks
are the ones learned in the double descent peak of the stan-
dard, one-hot case. However, in practice while the network

can do so, it does not appear to, which leads to the smooth
descent in Figure 2.

4.3. Deep Neural Networks

Model size double descent. We train a ResNet18 on CI-
FAR10 (top row in Figure 3), reproducing the setup from
(Nakkiran et al., 2019). We vary the number of parameters
in the neural network by changing the width k. Immediately,
we see that the double descent curve is relatively mitigated
in the case of the concatenated inputs construction where we
vary k from k = 5 to 20. Here, the curve is much smoother,
although not entirely smooth (see left (regular) and right
(concatenated) subplots in the Top-Left cluster in Figure 3).
Notably, the concatenated inputs construction retains the
test error across k, except in the interpolation region where
it achieves significantly lower test error (> 5%). The con-
clusion is identical when error is plotted against parameters,
since the concatenated inputs construction typically adds a
very few parameters (< 5%). We see this pattern repeated
on CIFAR-100 (Figure 3, Top-right cluster).

Epoch-wise double descent. We use the same setting, ex-
cept we train models for an additional 600 epochs, totaling
1000. In Figure 3, Bottom row, we consider the ResNet18
architecture for CIFAR10 (Left cluster of plots) and CI-
FAR100 (Right cluster of plots). We plot test error against
epochs. In the one hot setting (let us focus on the left plot
of CIFAR10 case), as expected, we observe a U shape for
medium sized models and a double descent for larger mod-
els (Nakkiran et al., 2019). For concatenated inputs (Right
plot of CIFAR10 case), a flat U shape and double descent is
existent, but significantly mitigated. The mitigation allows
a 5% improvement at the end of training for medium sized
models and a 10% improvement in the middle of training for
large models. We see similar results on CIFAR-100, where
double descent disappears with concatenated inputs.

4.4. Bias Variance decomposition

In this section, we follow (Yang et al., 2020) and decompose
the loss into bias and variance. Namely, let CE denote the
cross entropy loss, T a random variable representing the
training set, π is the true one-hot label, π̄ is the average
log-probability after normalization, and π̂ is the output of
the neural network. Then,

ET [CE(π, π̂)] = DKL(π||π̄) + ET [DKL(π̄||π̂)]

where the first component is the bias and the second com-
ponent is the variance. On a high level, the variance can
then be estimated by training separate same capacity models
on different splits of the dataset, and then measuring the
difference in outputs on the same test set. The bias is then
computed by subtracting the empirical variance from the
empirical risk. For finer details, see (Yang et al., 2020)
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Figure 3. Top Left: Model Size Double Descent on CIFAR10. Orange line is validation error, blue line is train error. Top Right: Model
Size Double Descent on CIFAR100. Orange line is validation error, blue line is train error. Bottom Left: Epoch-wise Double Descent
on CIFAR10. Bottom Right: Epoch-wise Double Descent on CIFAR100. For each subplot, Left: Standard one-hot vector setup, Right:
Concatenated inputs construction. Bottom plots legends’ represent the width k of the ResNet18. Models are ResNet18 architecture on
CIFAR-10 and CIFAR-100 datasets.

For training, we follow (Yang et al., 2020) and train a
ResNet-34 (He et al., 2016) on CIFAR10, with stochas-
tic gradient descent (learning rate = 0.1, momentum = 0.9).
The learning rate is decayed a factor of 0.1 every 200 epochs,
with a weight decay of 5e-4. The width k of the network is
varied suitably between 1 and 64. We also make 5 splits of
10,000 training samples for the calculation of bias/ variance.

We present results in Figure 4. The concatenated inputs
construction significantly delays and smoothens the increase
in variance relative to the standard case, where the unimodal
variance is significantly sharper. This impacts the shape of
the test error, where in this setting we see a shifted bump
in test error for the concatenated inputs construction. One
possible explanation is in the case of deep neural networks
the concatenated inputs construction is a form of implicit
regularization for small models, which controls overfitting
and leads to a smoother variance curve.

5. Discussion
While the understanding of over/underparameterization and
double descent is strongly tied to the number of samples, it
appears that given a fixed number of unique samples it is
possible to manipulate over/underparameterization by artifi-
cially boosting the number of samples by the concatenated
inputs construction.

A possible explanation in the literature for double descent
is that the model is being forced to fit the training data
as perfectly as possible, and at some model capacity it is
possible to fit the training data perfectly by overfitting on

Figure 4. Left: Bias and Variance against width k of ResNet-34
in the standard case. Middle: Bias and Variance against width
k of ResNet-34 in the concatenated inputs construction. Right:
Test error against width k of ResNet-34 in the standard case and
concatenated inputs construction.

non-existent, or weakly present, features. This results in
overfitting and the double descent curve. Interestingly, the
concatenated inputs construction generally mitigates double
descent, even though it is possible to build models for the
concatenated inputs construction from models for the stan-
dard setting. This suggests a possible route to improve the
understanding of the relationship to the model capacity.

The experimental results in this work support that neural
network behavior can change with respect to the number
of samples, even if the majority of samples add limited
information, via the concatenated inputs construction. In
this view, the concatenated inputs construction creates pos-
sibly a huge dataset, e.g. 50, 0002 samples for the originally
50, 000 samples CIFAR10 where 50, 0002 = 2,500,000,000
is far larger than any neural network for CIFAR10. Yet, there
is no noticeable underfitting. Namely, the concatenated in-
puts construction quickly achieves comparable performance
to the standard one-hot vector deep learning setting. This
suggests we may need to rethink the relationship between
underfitting, the number of parameters, samples, and model
capacity.
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