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Abstract

Living in the era of data deluge, we have witnessed a web content ex-
plosion, largely due to the massive availability of User-Generated Content
(UGC). In this work, we specifically consider the problem of geospatial
information extraction and representation, where one can exploit diverse
sources of information (such as image and audio data, text data, etc), go-
ing beyond traditional volunteered geographic information. Our ambition
is to include available narrative information in an effort to better explain
geospatial relationships: with spatial reasoning being a basic form of hu-
man cognition, narratives expressing such experiences typically contain
qualitative spatial data, i.e., spatial objects and spatial relationships.

To this end, we formulate a quantitative approach for the represen-
tation of qualitative spatial relations extracted from UGC in the form
of texts. The proposed method quantifies such relations based on multi-
ple text observations. Such observations provide distance and orientation
features which are utilized by a greedy Expectation Maximization-based
(EM) algorithm to infer a probability distribution over predefined spa-
tial relationships; the latter represent the quantified relationships under
user-defined probabilistic assumptions. We evaluate the applicability and
quality of the proposed approach using real UGC data originating from
an actual travel blog text corpus. To verify the result quality, we generate
grid-based “maps” visualizing the spatial extent of the various relations.

1 Introduction

During the last decade, we have witnessed an explosion in the amount and va-
riety of content available on the Web. Sophisticated analysis of such UGC has
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become an important issue in many cutting edge research fields such as Geo-
graphical Information Science. In this work, our goal is to take advantage of such
volunteered geographic information in geospatial data analysis. In particular,
when applied to the geospatial domain, this translates to massively collecting
and sharing knowledge in order to ultimately model and chart the world.

Traditionally, quantitative information in the form of spatial coordinates is
the data used in virtually all geospatial applications. With spatial reasoning
being a basic form of human cognition, qualitative spatial data in the form of
spatial relationships (North, South, In, Close, Next, Far, etc.) is what people
typically use in order to describe spatial scenarios. Such data makes a prime
source for user-contributed geospatial content. Especially narratives expressing
such experiences typically contain spatial knowledge. However, one of the draw-
backs of this data is its lack of precision as qualitative relations are interpreted
differently by the users (in contrast to coordinates).

As a motivational example we could consider the sentence; “Big Ben is
the nickname for the great bell of the clock at the north end of the Palace of
Westminster”. In this case, we want to quantify what people imply when they
say “North” in terms of distance and direction. Having quantified “North”
in this context and knowing the location of either “Big Ben” or “Palace of
Westminster” will allow us to infer possible locations for the other. Eventually,
by collecting more observations of this form, we will be able to refine the location
and, thus, locate spatial objects that otherwise could not be geocoded. Figure 1
illustrates the underlying idea by relating our observation-based approach to the
triangulation problem from surveying engineering, where an unknown location
is determined by “observing” known locations.

To this end, we consider the following problem:

Problem: Given a set of spatial objects K whose positions in space are known,
a set of spatial objects U whose positions in space are unknown, and a set of
spatial relationships R, find probabilistic estimates of the positions of objects of
set U based on their spatial relationships R with objects of set K.

To achieve this, our approach follows a probabilistic path: the proposed
method quantifies qualitative relations as probability measures based on crowd-
sourced multiple observations contained in texts. Each observation is roughly
quantified using a spatial feature vector comprising distance and orientation.
Then, a greedy Expectation Maximization-based (EM) method is used to train
a probability distribution. The latter represents the quantified spatial relation-
ships under a probabilistic framework, i.e., it provides a set of random variables
(spatial feature vector) that have certain probability density functions (PDFs)
associated with them, for a specific spatial relation.

In this work, we employ probabilistic models to represent spatial relation-
ships. To the best of our knowledge, this is the first work that combines qual-
itative and quantitative spatial information for spatial probabilistic inference.
The novelty of our approach lies in the process of mapping textual crowdsourced
and uncertain location observations to their probable locations based on proba-
bilistic spatial relationship models. The traditional machine learning techniques
that we employ have never been used to achieve such a mapping. Moreover, this
approach is one of the pivotal steps in developing automatic map-generation-
from-text tools based on crowdsourced data.

The outline of the remainder of this work is as follows. Section 2 discusses
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Figure 1: Intuitive problem formalization. Pi, Pj and Pk represent known
locations that are used to compute several unknown locations (Px and Py)
based on distance and angle observations.

related work. Section 3 discusses the specific qualitative data involved and
introduces the spatial feature vectors used for quantification, while Section 4
introduces the tools necessary to derive quantification in the form of PDFs
for the spatial relationships. Section 5 validates the proposed approach by
means of “mapping” the obtained quantified relationships and using a similarity
metric to assess the iterative quantification process. Finally, Section 6 presents
conclusions and directions for future work.

2 Related Work

Work relevant to this paper includes qualitative modeling of spatial relations
with application to spatial data management, and quantitative modeling of
spatial knowledge.

Qualitative: The majority of works related to qualitative approaches for
spatial information representation considers spatial relations. One popular spa-
tial classification is constructed by topological relations (e.g., disjoint, overlap),
direction relations (e.g., North, South), ordinal relations (e.g., inside, contain),
and distance relations (e.g., far, near). The authors in [8, 9, 10, 17] present
formal methods for qualitative representation of spatial relationships based on
mathematical theories of order. Their applicability on spatial database systems
and some key-role technical concepts are coherently discussed in [14, 24, 25].
Qualitative representation of spatial knowledge is discussed in [12, 20, 23]. The
authors identify the common concepts of the qualitative representation and pro-
cessing of spatial knowledge. They compare the representational properties of
different systems and outline the computational tasks involved in relation-based
spatial information processing.

Quantitative: Recent research on quantitative representation of spatial
knowledge has been conducted in relation to situational awareness systems,
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robotics, and image processing. Modelling uncertain spatial information for sit-
uational awareness systems is discussed in [18] and [22]. The authors propose
a bayesian probabilistic approach to model and represent uncertain event lo-
cations described by human reporters in the form of free text. They analyze
several types of spatial queries of interest in situational awareness applications.
Estimation of uncertain spatial relationships in robotics is addressed in [27].
The paper describes a representation of spatial information, called the stochas-
tic map, and associated procedures for building it, reading information from
it, and revising it incrementally as new information is obtained. The stochastic
map contains the estimates of relationships among objects in the map, and their
uncertainties, given all the available information. A probabilistic algorithm for
the estimation of distributions over geographic locations is proposed in [15].
The authors use a data-driven scene matching approach in order to estimate
geographic information based on images. In [28] the authors attempt to create
a hierarchical probabilistic concept-oriented representation of space, based on
objects. Their approach is based on learning from exemplars, clustering and the
use of Bayesian network classifiers. Such a conceptualization and representation
can enable robots to be more cognizant of their surroundings. Image similarity
based on quantitative spatial relationship modeling is addressed in [31]. The
authors propose a novel method for the representation of relative spatial rela-
tions between objects in images, applied to multimedia database applications.
Finally, there has been some theoretic work on modeling spatial uncertainty us-
ing heuristics and fuzzy logic techniques. For example, in [32], a fuzzy decision
tree algorithm is proposed to formalize spatial relations between linear objects.

3 Spatial Features from Qualitative Data

The main contribution of this work is to model qualitative spatial information
in a quantitative and probabilistic way. Our main data source will be narratives
and this section will survey our approach for extracting qualitative data from
texts. Moreover, to be able to quantify qualitative spatial data, we need to have
a respective means for representing it. Here, we present the spatial feature vector
that models spatial relationships based on distance and orientation measures.

3.1 Dataset

Crowdsourced narratives are likely to contain spatial information. The more
relevant the text is to “space”, the more data it will contain. Our specific case
considers travel blogs as a rich potential data source. This assumption is based
on the intuition that people tend to describe their experiences in relation to their
trips and places they have visited. This behavior results in “spatial” narratives.

To obtain such data, we used classical web crawling techniques as presented
in [6] and we compiled a database1 consisting of 120K user generated texts
obtained from travel blogs2.

1Available upon request
2TravelBlog, TravelJournal, TravelPod
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3.2 Spatial Relations

Obtaining qualitative spatial data from text involves the detection (i) of spatial
objects, i.e., Points-of-Interest (POIs) or toponyms and (ii) of spatial relation-
ships between those POIs. The employed approach involves geoparsing, i.e.,
the detection of candidate phrases, and geocoding, i.e., linking the phrase/to-
ponym to actual coordinate information. Using GATE’s [4] text processing and
semantic analysis components in combination with the algorithm presented in
[6], we managed to extract 120k POIs from the text corpus. For the geocod-
ing of the POIs, we rely on the open-source module GeoGoogle3, a Java API
utilizing the geocoding service that is part of the Google Maps API. This proce-
dure associates (whenever possible) geographic coordinates with POIs that have
been identified in the travel blog data. The final result of this stage is an index
that contains the geographic coordinate information plus text information of all
POIs, i.e., document, paragraph, sentence and word distance information.

The following excerpts are texts that contain relevant POIs and respective
spatial relationship data.

• “...and then went out for tea at a lovely Italian restaurant in Soho near
Covent Garden”

• “Tate Modern is a big modern art gallery, on South Bank, amazing build-
ing, has some great stuff in it as well.”

These examples confirm our initial hypothesis for the existence of spatial
knowledge in user generated content. As expected, we observe that POIs are
more dense in urban places.

Having identified and geocoded the spatial objects, the next step is the
localization of qualitative spatial relationships. This would ideally require effi-
cient natural language processing (NLP) tools to automatically extract and map
phrases to spatial relations linking POIs as contained in texts. Kernel methods
for semantic relation extraction between entities in texts are developed in [3]
and [34]. In [33] and [35], Support Vector Machine (SVM) approaches are used
to extract spatial relations for spatial reasoning. In [19], the authors report on
a novel task of spatial role labeling in text, based on machine learning meth-
ods to extract spatial roles and their relations. Finally, extraction of semantic
relations from texts using dependency grammar patterns is addressed in [11]
and [30]. Overall, while several of these techniques would be useful for spatial
relationship extraction from texts, none either performed in a satisfying way or
were available to us.

For the scope of this work, which lies on the area of probabilistic modelling
of qualitative data but not on the extraction of qualitative spatial knowledge
from text, we overcome this problem by using human annotation in combination
with filtering of the input dataset. We restrict the data to be considered (i) to
the geographic area of London and further reduce it by (ii) only considering
sentences that include at least two POIs (which are needed to express a spatial
relationship). This manageable dataset (sentences) is then annotated by humans
to extract spatial relationships. Human annotation results into tuples of the
form shown in Table 1. Here P = {P1, . . . , Pm} represents the set of spatial

3http://geo-google.sourceforge.net

5



objects participating in binary spatial relationships R = {R1, . . . , Rn} with
i, j ≤ m and k ≤ n.

P R P
P1 R1 P2

P3 R1 P4

P3 R1 P5

...
...

...
Pi Rk Pj

Table 1: Dataset denoting (geocoded) spatial objects and spatial relations.

3.3 Spatial Features

Statistical models are often used to represent observations in terms of random
variables. These models can then be used for estimation, description, and pre-
diction based on basic probability theory. In our approach, we model a spatial
relation between two POIs Pk ∈ K and Pu ∈ U (k declares known and u declares
unknown as described in Section 1) in terms of distance and orientation. We
consider a labeled spatial feature vector as two random variables that model
spatial relations in a probabilistic way. Assuming a projected (Cartesian) coor-
dinate system, the distance is computed as the Euclidean metric between the
two respective coordinates. The orientation is established as the counterclock-
wise rotation of the x-axis, centered at Pk, to the unknown point Pu.

Several instances of a spatial relation are used to create a dataset which will
be used to train a probabilistic model for each spatial relation. Under a mathe-
matical formalization, let us consider that for each instance of each relation we
create a two-dimensional spatial feature vectorX = (Xd, Xo)ᵀ whereXd denotes
the distance and Xo denotes the orientation between Pk and Pu. We end up with
a set of two-dimensional feature vectors X = {X1, X2, . . . , Xn} for each spatial
relation where the i-th vector of each set has the form Xi = (Xdi, Xoi)

ᵀ. An
example of the feature extraction procedure is illustrated in Figure 2, where four
instances of spatial relation Near are used in order to create the respective set of
spatial feature vectors Xnear = {[Xd1, Xo1]ᵀ, [Xd2, Xo2]ᵀ, [Xd3, Xo3]ᵀ, [Xd4, Xo4]ᵀ}.
In this scenario, K = {A,D,E,G} and U = {B,C, F,H}.

4 Spatial Relation Modeling

In this section we discuss the methods and algorithms we used to train proba-
bilistic models that can efficiently represent spatial relationships based on our
dataset. More specifically, we start by describing the approach we use to pop-
ulate our dataset by using Kernel Density Estimation (KDE) which is a state-
of-the-art method for the estimation of a multi-dimensional probability den-
sity function. We continue by analyzing the Gaussian Mixture Model (GMM),
which is the probabilistic model we employ for the quantitative representation
of spatial relations and we outline a greedy learning algorithm for parameter
estimation of the GMM. Finally, we discuss Kullback-Leibler (KL) divergence,
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Figure 2: Distance and orientation feature extraction procedure. In this case B
is near A, C is near D, F is near E and H is near G.

which is utilized to assess the similarity between GMMs, i.e., comparing GMM
estimation stages of the same spatial relation, but also to compare different
relations.

4.1 Populating a Spatial Feature Dataset

The collected data includes 120K texts from travel blogs; however, with a focus
on a specific geographic area (London), the dataset does not include enough
spatial relationship instances to train a two-dimensional probabilistic model.

To obtain more data we use KDE [2]. In our scenario, KDE techniques
provide new density samples based on a small amount of ground-truth data.
These estimates are then used in order to generate additional spatial feature
vector data (semi-synthetic) to train probabilistic models (GMMs).

Relating KDE to our problem, let X = (Xd, Xo) follow a two-dimensional
true density f defined over R2. Let X = {X1,. . . , Xn} be an independent
random sample set (initial spatial feature vector set in our case) drawn from f .
The general form of the kernel density estimation function of f is:

f̂H(x;H) =
1

n

n∑
i=1

KH(x−Xi) (1)

where x = (x1, x2)ᵀ is a generic vector that depends on the Kernel used,
e.g. Gaussian, Epanechnikov, Cosine etc., Xi = (Xdi, Xoi)

ᵀ with 1 ≤ i ≤ n,

KH(x) = |H|− 1
2K(H−

1
2x), and n denotes the number of instances of each spa-

tial relation. In our case, KH(x) is a Gaussian bivariate kernel function, and H
is a symmetric positive definite 2× 2 diagonal matrix (bandwidth matrix).
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The performance of a kernel density estimator is primarily determined by the
choice of bandwidth, which controls the degree of smoothing, and secondarily
by the choice of the kernel function, which in our case is Gaussian. A large body
of literature [2, 16] exists on bandwidth selection for univariate and multivariate
kernel density estimation. In this contribution, we follow a simple case scenario
as described in [2]. With data observed from a bivariate normal density, the
diagonal bandwidth matrix, denoted by

H =

(
h1 0
0 h2

)
(2)

can be well approximated by hb = σb

(
4

(d+2)n

) 1
d+4

for b ∈ {1, 2}, where σb is the

standard deviation of the i-th variate and d denotes the problem’s dimension-
ality. This method is often used when no other practical bandwidth selection
scheme is available, despite the fact that most interesting data are non-Gaussian.

Data of such a process is visualized in Figure 3 which illustrates the initial
dataset for a spatial relationship in a two-dimensional space (distance [km] and
orientation [degrees] as the x and y-axis respectively), the Gaussian kernel den-
sity estimate of the probability density function (PDF) of the initial dataset and
the generated samples using the estimated PDF, respectively.
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Figure 3: Spatial feature dataset population: (i) initial dataset (ii) estimated
probability density function using KDE, and (iii) generated dataset.

Finally, as we explain in Section 5, we underline that we use the gener-
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ated data only for training probabilistic models and not for testing, since the
generated data exhibits a considerable bias.

4.2 Quantifying Qualitative Relations

The essential step in quantifying qualitative data is the mapping of the generated
data to PDFs. Here we have to decide what kind of probabilistic model we desire
to train. Using Gaussian kernel density estimation to populate our dataset,
we naturally opted for Gaussian Mixture Models (GMMs). GMMs have been
extensively used in many classification and general machine learning problems
(cf. [1, 7]). They are very well known for (i) their formality, as they build on the
formal probability theory, (ii) their practicality, as they have been implemented
several times in practice, (iii) their generality, as they are capable of handling
many different types of uncertainty, and (iv) their effectiveness because existing
solutions that employ them known to be effective and scalable.

Generally speaking, a GMM is a weighted sum of M component Gaussian
densities as

p(x|λ) =

M∑
i=1

wig(x;µi,Σi) (3)

where x is a d-dimensional data vector (i.e., features - in our case d = 2), wi

, 1 ≤ i ≤ M , are the mixture weights, and g(x|µi,Σi) is a Gaussian density
function ∀i, with mean vector µi ∈ Rd and covariance matrix Σi ∈ Rd×d such
that

g(x;µi,Σi) =

(2π)−
d
2 det (Σi)

− 1
2 exp (−1

2
(x− µi)

ᵀΣ−1i (x− µi))
(4)

with mean vector µi ∈ Rd and covariance matrix Σi ∈ Rd×d. The mixture
weights satisfy the constraint that

M∑
i=1

wi = 1 (5)

with wi ≥ 0.
The complete GMM is parameterized by the mean vectors, the covariance

matrices and mixture weights ∀i. These parameters are collectively represented
in Equation 3, by the notation λ = {wi, µi,Σi} with i = 1, . . . ,M . In our setting,
each spatial relation is modeled by a 2-dimensional GMM trained with each
relation’s spatial feature vectors, which are created as detailed in Sections 3.3
and 4.1.

For the parameter estimation of Gaussian component of each GMM, we
use Expectation Maximization (EM) (cf. [5]). EM enables us to update the
parameters of a given M-component mixture with respect to a feature vector
set (generated spatial feature vector set in our case) X = {X1, . . . , Xn} with
1 ≤ j ≤ n and all Xj ∈ Rd, such that the log-likelihood L of X calculated using
Equation 6 increases with each re-etimation step. This means that we keep
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re-estimating model parameters until the log-likelihood L or the parameters
converge.

L =

n∑
j=1

log(p(Xj |λ)) (6)

The updates for the parameters of a GMM can be accomplished by iterative
application of the following equations for all components i ∈ {1, ...,M}

P (i|Xj) =
wig(Xj ;λi)

p(Xj |λ)
(7)

wi =

n∑
j=1

P (i|Xj)

n
(8)

µi =

n∑
j=1

P (i|Xj)Xj

nwi
(9)

Σi =

n∑
j=1

P (i|Xj)(Xj − µi)(Xj − µi)
ᵀ

nwi
(10)

The EM algorithm is not guaranteed to lead us to the solution yielding max-
imum log-likelihood on X among all maxima of the log-likelihood. Nevertheless,
using the EM algorithm, if we are “close” to the global optimum (maximum) of
the parameter space, then it is very likely we can obtain the globally optimal
solution.

4.3 Model Optimization

A main issue in probabilistic modeling with GMMs is that a predefined number
of components per Gaussian mixture is neither a dynamic nor an efficient and
robust approach. The optimal number of Gaussian components should be de-
cided based on each dataset. Hence, in this section we employ a greedy learning
approach to dynamically estimate the number of components in a GMM. (cf.
[29]). Typically a GMM is trained by starting with a random configuration of
all components and improve upon this configuration with the EM algorithm.
This greedy approach tries to build the mixture component in a more efficient
way by starting from an one-component GMM, whose parameters are trivially
computed by using EM (cf. Section 4.2), and then employing the following two
steps until a stop criterion is met.

1. Insert a new component in the mixture

2. Apply EM until the log-likelihood L or the parameters of the GMM con-
verge (cf. Section 4.2)

The stop criterion can either be a maximum pre-specified number of com-
ponents, or it can be any other model selection criterion like Minimum Descrip-
tion Length [13] or Bayesian Information Criterion (BIC) [26]. In our case the
algorithm stops if the maximum number of components is reached, or if the
log-likelihood L after introducing a new component is lower than that of the
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previous model. For a more formal description let us consider a feature vector
set (generated spatial feature vector set in our case) X under an M-component
mixture pM (X|λ). The greedy learning algorithm can be summarized in the
following five steps:

1. Compute the one-component mixture p1(X|λ) that yields maximum log-
likelihood using the (EM) algorithm.

2. Find the optimal new component g(X ;λ∗) and the corresponding mixing
weight w∗.

3. Set pM+1(X|λ) = (1− w∗)pM (X|λ) + w∗g(X ;λ∗) and M = M + 1.

4. Update new model parameters using EM algorithm.

5. Terminate if (i) log-likelihood L of GMM starts to decrease, or (ii) max
number of components is reached; else go to step 2.

The crucial step of the algorithm is the component insertion in Step 2.
Several approaches exist here. One is to consider a number of candidates equal to
the number of feature vectors but this would be rather expensive. The approach
followed in this work is to pick an optimal number of candidate components as
discussed in [29].

Figure 4 illustrates a converged 3-component GMM. In this case, the max-
imum number of Gaussian components was used as a stop criterion. Distance
and orientation are used as uncorrelated random variables, which means that
all Gaussian components in each GMM have diagonal covariance matrices. The
x and the y-axes represent raw (not normalized) distance and orientation infor-
mation in kilometers and degrees, respectively.
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Figure 4: Converged max 3-component GMM.
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4.4 Similarity Between Quantitative Spatial Relationships

In many probabilistic classification problems several metrics have been pro-
posed to compute a distance measurement between different classes as a means
to compare them. Measuring distance between converged PDFs which model
different classes (spatial relationships in our case) is a measure of similarity be-
tween them. In our contribution, we use Kullback-Leibler (KL) divergence [21]
as such a distance metric.

There are two main reasons for checking similarity between quantified spatial
relations. Firstly, we want to observe the changes for each GMM as we increase
the maximum number of Gaussian components during the training procedure.
Secondly, we use KL divergence to measure the similarity between spatial re-
lationships that tend to follow similar patterns, e.g., Near & NextTo, In &
On.

KL divergence is a similarity measure between two probability distributions.
So, let F1(x) and F2(x) be two probability distributions (GMMs in our case).
By definition, the KL distance D(F1(x)||F2(x)) between F1(x) and F2(x) is
given as follows.

D(F1(x)||F2(x)) =

∫
F1(x) log

{
F1(x)
F2(x)

}
dx (11)

The KL divergence is always nonnegative and it is zero only when the two
distributions are identical. Additionally KL divergence is not symmetric, i.e.,
D(F1(x)||F2(x)) 6= D(F2(x)||F1(x)).

It is common to encounter the symmetric version of the KL divergence be-
tween F1(x) and F2(x)) as

Dsym(F1(x)||F2(x)) =
D(F1(x)||F2(x)) +D(F2(x)||F1(x))

2
(12)

In this work, we use the symmetric KL divergence in order to measure the
similarity between GMMs.

5 Experimentation

The scope of this section is to assess the quantitative representation of quali-
tative geospatial data by means of probability distributions (GMMs). For this
purpose, we investigate a set of spatial relationships for a specific geographic area
(London). In terms of experiments, we compute probabilistic representations of
spatial relationships by considering distance and orientation as dependent but,
uncorrelated features (case one) and as correlated features (case two).

We visualize the results of the trained models and compare them to check
if they intuitively perform well, e.g., they return visually reasonable results. In
addition, we measure the KL divergence for spatial relationships between a base-
line one-component model and the maximum number of Gaussian components
model. Finally, based on visualization and KL divergence, we assess the infor-
mativeness and efficiency of distance and orientation features for quantitative
modeling of spatial relations and observe how much different spatial relations
may behave in a similar way.
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5.1 Experimental Setup

The choice of an appropriate dataset is crucial in our experimentation. As men-
tioned is Section 3.2, the density of POIs is very high in urban regions. We
decided to use data from such a dense region to find meaningful as well as con-
sistent spatial relationships. We retrieved data for a bounding box that contains
the greater area of London, UK. In this preprocessing step, we parsed our travel
blog data (120k texts) set and retrieved sentences containing at least two POIs
and whose coordinates are within the bounding box of Latitude [51◦, 52◦] and
longitude [−1◦, 1◦]. This resulted in 12k sentences. Using human annotation, we
extracted instances of the eight most frequent spatial relations including North,
South, East, West, Near, In, On, NextTo. This means also that in our travel
blog dataset, people tend to use a mixture of directional, topology and vague
metrical relations in order to describe POI locations. From this data, distance
and orientation features where extracted as described in Section 3.

Given that only a small percentage of the collected data contains spatial
relationship information, here to obtain a meaningful amount of useful data,
we need to overall collect a large volume of texts. For example, considering
the London case, approximately 10% of the 12000 sentences contained clear
instances of spatial relationships. For the specific approach, this would have
not been enough to train and test probabilistic models. We use KDE to create
a semi-synthetic dataset based on the collected data (cf. Section 4.1). More
specifically, we use KDE to estimate each spatial relationship’s density func-
tion. This estimate is then used to generate more samples and so to train a
probabilistic model. As explained is Section 4.1, we use the generated data only
for training probabilistic models but not for testing because of the considerable
bias.

Next, we employ the greedy EM algorithm to train bivariate GMMs based
on the extracted distance and orientation features for each spatial relationship.
The results are PDFs for each spatial relationship that, as the initial outset
suggests, can be used to estimate the unknown position of spatial objects.

Our approach has been implemented in Matlab and all the experiments
were conducted on an Intel(R) Core(TM) i5-2400 CPU at 3.10GHz with 8GB
of RAM, running Ubuntu Linux 11.10.

5.2 Visualization of Quantitative Spatial Relations

The most important means of assessing the result is to visualize the quantified
spatial relations. We divided the London bounding box to filter the input data
by means of a 50 × 50 spatial grid. Each grid cell corresponds to a 4.4km ×
2.2km spatial extent (Longitude, Latitude). Given two spatial objects and the
known location at the center of the grid, we plot for each grid cell the positional
probability of the unknown location, i.e., how likely it would be for the unknown
spatial object to be located in a specific grid cell. Using a heat map, warmer
colors (red) indicate higher probabilities.

Figure 5 shows four spatial relationships modeled as one-component GMMs,
with distance and orientation considered as uncorrelated random variables.

The proposed modeling based on distance and orientation features performs
especially well in some of the cases. More specifically, for the cases of North (cf.
Figure 5(a)), South (cf. Figure 5(b)) and Near (cf. Figure 5(c)) the proposed

13



−1 −0.5 0 0.5 1
51

51.2

51.4

51.6

51.8

52  

Lon

 

L
a
t

0

0.2

0.4

0.6

0.8

1

x 10
−4

(a) North

−1 −0.5 0 0.5 1
51

51.2

51.4

51.6

51.8

52  

Lon

 

L
a
t

2

4

6

8

10

x 10
−5

(b) South

−1 −0.5 0 0.5 1
51

51.2

51.4

51.6

51.8

52  

Lon

 

L
a
t

0

1

2

3

4

5

6
x 10

−4

(c) Near

−1 −0.5 0 0.5 1
51

51.2

51.4

51.6

51.8

52  

Lon

 

L
a
t

0

1

2

3

4

5

6

7

x 10
−5

(d) In

Figure 5: Probabilistic heat maps for four basic spatial relationships: 1-
Component Gaussian Mixture Models for the uncorrelated distance and ori-
entation case. All figures illustrate the case where a POI is conntected with the
center of the grid, with the respective spatial relation.

model returns high probabilities in the expected regions. On the other hand,
the case of In (cf. Figure 5(d)) seems to include a lot of statistical noise due
to the general uncertain nature of user generated content. For example, high
distance and orientation variance values for the cases of On and In are caused
by the the fact that most of the sentences that contain these spatial relations
are of the form POI in London and POI on river Thames.

5.2.1 Optimal Number of Gaussian Components

An important parameter when generating GMMs is the maximum number of
Gaussian components. Such a limit is simply a stop criterion in the GMM
training process and does not mean that the final component will converge to
this upper limit, e.g., it might already converge to a lower number of compo-
nents. Figure 6 illustrates the case of spatial relation North. The heat maps
of Figures 6(a) and 6(b) show the cases of a maximum of 1 Gaussian compo-
nents per mixture when distance and orientation are considered as uncorrelated
and correlated, respectively. The heat maps of Figures 6(c) and 6(d) show the
cases of a maximum of 5 Gaussian components per mixture, when distance and
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(d) Max 5-Component Correlated Case

Figure 6: Probabilistic heat maps for North: (a), (b) show correlated and un-
correlated distance and orientation case for a max of 1 Gaussian component per
GMM while (c), (d) show correlated and uncorrelated distance and orientation
case for a max of 5 Gaussian components per GMM.

orientation are considered as uncorrelated and correlated, respectively.
For both uncorrelated and correlated cases, Figures 6(c) and 6(d) show that

by stepwise increasing the maximum number of Gaussian components, high
probabilities tend to accumulate in fragmented small regions. The reason is
that higher number of mixtures per GMM leads to components that are con-
verging on their parameters (mean, covariance, component weight) based on
more dense regions of the dataset, e.g., regions with more data samples will
become dominant components. The weight of such dominant components (it is
denoted as w in Section 4.2) is higher than the weight of other components in
the final GMM. This results in fragmented high probability regions in the final
heat maps.

As a result of this phenomenon, a major question is to the best approach to
decide about the number of components per GMM. From an intuitive point of
view, a smaller number of Gaussian components performs better as it preserves
spatial generality, i.e., trends. However, as high probability regions are larger,
they might result in inefficient location prediction tasks. From a statistical
point of view, a high number of mixture components results in more accurate
probabilistic models and better classification performance in most of the cases.
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Unfortunately, the latter approach leads to sparse and small, high probability
regions, which could be characterized as biased to the specific characteristics of
the geographic region from where the dataset is taken (London in our case).

In Figures 7(a) and 7(c), we depict the average log-likelihood, e.g., we esti-
mated parameters and log-likelihoods for each spatial relation model running the
greedy learning algorithm 100 times per maximum component step and stepwise
increasing the maximum Gaussian components per GMM. Figures 7(a) and 7(c)
show the cases of correlated and uncorrelated distance and orientation random
variables, respectively. In both cases, most of the spatial relation models con-
verge on a high number of components, i.e., 16-17. Only spatial relations Near
and NextTo converge on a smaller number of components. This means that
statistically, most of the spatial relationships should be modeled with an upper
limit of Gaussian components close to 16 or 17. In practice, this will result in
fragmented spatial probabilities (heat maps) as outlined above.

Concluding, we realize that based on the log-likelihood measurements, there
are statistically correct and sometimes optimal solutions for deciding the number
of components. The difficult part in our case is the balance between statistical
and intuitive robustness.

Based on a user generated dataset, we believe that GMMs with a number
of components between 1 and 10 are statistically correct (but not optimal) and
intuitively efficient to model spatial relations.

5.2.2 Correlated vs. Uncorrelated Features

Correlation between distance and orientation is another important issue when
training GMMs. Literature suggests that most of the classification approaches
perform better when probabilistic models are trained taking into consideration
the correlation between random variables. In our work, visualization shows that
there is a high correlation between distance and orientation for some but not
all cases. Figure 6 illustrates the case of North. For the heat maps shown
in Figures 6(a) and 6(c), distance and orientation are considered uncorrelated,
for Figures 6(b) and 6(d), they are considered as correlated random variables.
Intuition suggests that we can not guarantee that the correlated case performs
better, even if we are sure that distance and orientation are correlated. The
North case should result in high probabilities for the top part of the grid as it
should be the case for all directional relations. However, based on visual results
and heat maps for all modeled spatial relations, we observe that distance and
orientation seem to be less correlated for the cases of In (cf. Figure 5(d)) and
On, and tend to have zero correlation, e.g., region around the center of the
grid with almost equal probabilities, for the cases of Near (cf. Figure 5(c)) and
NextTo. As expected, this leads as to the conclusion that some spatial relations
are independent of orientation, e.g., only distance could model them efficiently.
This also means that distance and orientation should be modeled as independent
random variables.

Summing up, based on user-generated content, we believe that directional
relations like North should be modeled taking correlation between distance and
orientation into consideration. On the other hand, topological relations such as
In and metric relations like Near tend to be independent of orientation, which
means that correlation between distance and orientation should not be taken
into consideration during modeling.
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5.3 Similarity Between Quantified Spatial Relations

Besides a visual inspection, it is important to have a quality metric to assess
the probabilistic spatial relation quantification. We use Kullback-Leibler (KL)
divergence (i) to assess the similarity between converged GMMs of the same
relation and (ii) to measure the similarity between some spatial relationships
that tend to follow similar patterns.

Figures 7(b) and 7(d) illustrate the KL divergence between the baseline 1-
component GMM and the final converged GMM after each step of increasing
the maximum number of components for correlated and uncorrelated cases,
respectively. Most of the models tend to diverge from the baseline model as we
increase the maximum number of components. Only the models for Near and
NextTo have low and zero distance from their baseline model. This matches the
corresponding log-likelihoods illustrated in Figures 7(a) and 7(c), which remain
almost stable. In these examples, with a small number of Gaussian components
for Near and one Gaussian component for NextTo the log-likelihoods remains
stable.

Finally, Figures 7(e) and 7(f) show that spatial relation pairs Near-NextTo
and On-In exhibit similar characteristics. To assess this similarity, we measured
the KL divergence for all cases of their models. The aforementioned figures show
that the pair On-In seems to diverge as we increase the number of components
for both correlated and uncorrelated cases. However, the pair Near-NextTo ex-
hibits low values of KL divergence for all cases. This leads to the conclusion
that people use more than one language expression to describe the same spatial
relation. For our examples, this means that we could merge the cases of Near
and NextTo into one probabilistic model.

6 Conclusions

The increase in available user-generated data provides a unique opportunity
for the generation of rich datasets in geographical information science. In this
work, we provide a quantitative approach for the representation of qualitative
spatial relations extracted from such data based on training probabilistic mod-
els. The proposed scheme returns estimates of uncertain object locations based
on distance and orientation features as provided by human reporters in relation
to known object locations. To achieve these desiderata, we propose a greedy
learning algorithm based on the Expectation Maximization (EM) framework to
train probabilistic models over spatial relationships; here, we restrict our atten-
tion on GMM models. The proposed approach seems to be promising in terms
of accurately capturing and representing spatial relationships. Distance and
orientation features tend to describe all spatial relations that were extracted
from user generated texts in an informative way. Moreover, our probabilistic
approach seems to be robust in handling any uncertainties, which characterize
observations in crowd-sourced text data. As a future research direction, we al-
ready have been investigating new NLP techniques for the automatic extraction
of POIs and spatial relationship information from texts and we are very close
to a practical and theoretically robust solution. This will enable us to evaluate
additional probabilistic and deterministic modeling techniques and to develop
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efficient text-to-map applications.

Acknowledgements

The research leading to these results has received funding from the European
Union Seventh Framework Programme - Marie Curie Actions, Initial Training
Network GEOCROWD (http://www.geocrowd.eu) under grant agreement No.
FP7-PEOPLE-2010-ITN-264994.

References

[1] C. M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[2] A. W. Bowman and A. Azzalini. Applied Smoothing Techniques for Data
Analysis: The Kernel Approach with S-Plus Illustrations (Oxford Statistical
Science Series). Oxford University Press, USA, Nov. 1997.

[3] R. Bunescu and R. Mooney. Subsequence Kernels for Relation Extraction.
In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural In-
formation Processing Systems 18, pages 171–178. MIT Press, Cambridge,
MA, 2006.

[4] H. Cunningham, Y. Wilks, and R. J. Gaizauskas. Gate - a general archi-
tecture for text engineering, 1996.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical
Society, Series B, 39(1):1–38, 1977.

[6] E. Drymonas and D. Pfoser. Geospatial route extraction from texts. In
Proceedings of the 1st ACM SIGSPATIAL International Workshop on Data
Mining for Geoinformatics, DMG ’10, pages 29–37, New York, NY, USA,
2010. ACM.

[7] H. P. Duda, R. and D. Stork. Pattern Classification. John Wiley and Sons.,
2001.

[8] M. Egenhofer. A formal definition of binary topological relationships. In
W. Litwin and H.-J. Schek, editors, Foundations of Data Organization and
Algorithms, volume 367 of Lecture Notes in Computer Science, pages 457–
472. Springer Berlin / Heidelberg, 1989.

[9] M. J. Egenhofer and J. Herring. A mathematical framework for the defini-
tions of topological relationships. In Int’l Symp. on Spatial Data Handling,
1990.

[10] M. J. Egenhofer and J. Sharma. Topological relations between regions in
r2 and z2. In SSD, pages 316–336, 1993.

18



[11] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open infor-
mation extraction. In Proceedings of the Conference of Empirical Methods
in Natural Language Processing (EMNLP ’11), Edinburgh, Scotland, UK,
July 27-31 2011.

[12] A. U. Frank. Ontology for spatio-temporal databases. In Spatio-Temporal
Databases: The Chorochronos Approach, pages 9–77, 2003.

[13] P. D. Grünwald. The Minimum Description Length Principle (Adaptive
Computation and Machine Learning). The MIT Press, 2007.
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Figure 7: (a), (c) Average log-likelihood vs maximum number of Gaussian
components for correlated and uncorrelated distance and orientation case re-
spectively. (b), (d) Average KL divergence between the baseline 1-component
GMM and the final converged GMM after each step of increasing the maximum
number of components for correlated and uncorrelated distance and orienta-
tion case respectively. (e), (f) Average KL diverge between spatial relationship
pairs “In-On” and “Near-Nextto” for correlated and uncorrelated distance and
orientation case respectively.
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