
Improving Co-Cluster Quality
with Application to Product Recommendations

Michail Vlachos
∗

IBM Research, Zurich
Francesco Fusco
IBM Research, Zurich

Charalambos Mavroforakis
Boston University

Anastasios Kyrillidis
EPFL, Lausanne

Vassilios G. Vassiliadis
IBM Research, Zurich

ABSTRACT

Businesses store an ever increasing amount of historical customer
sales data. Given the availability of such information, it is advanta-
geous to analyze past sales, both for revealing dominant buying pat-
terns, and for providing more targeted recommendations to clients.
In this context, co-clustering has proved to be an important data-
modeling primitive for revealing latent connections between two
sets of entities, such as customers and products.

In this work, we introduce a new algorithm for co-clustering that
is both scalable and highly resilient to noise. Our method is inspired
by k-Means and agglomerative hierarchical clustering approaches:
(i) first it searches for elementary co-clustering structures and (ii)
then combines them into a better, more compact, solution. The
algorithm is flexible as it does not require an explicit number of
co-clusters as input, and is directly applicable on large data graphs.
We apply our methodology on real sales data to analyze and vi-
sualize the connections between clients and products. We show-
case a real deployment of the system, and how it has been used
for driving a recommendation engine. Finally, we demonstrate that
the new methodology can discover co-clusters of better quality and
relevance than state-of-the-art co-clustering techniques.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Clustering

1. INTRODUCTION
Graphs are popular data abstractions, used for compact repre-

sentation of datasets and for modeling connections between enti-
ties. When studying the relationship between two classes of objects
(e.g., customers vs. products, viewers vs. movies, etc.), bipartite

graphs, in which every edge in the graph highlights a connection
between objects in different classes, arise as a natural choice for
data representation. Owing to their ubiquity, bipartite graphs have
been the focus of a broad spectrum of studies, spanning from docu-

∗
The research leading to these results has received funding from the European

Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement no 259569.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

CIKM’14, November 3–7, 2014, Shanghai, China.

Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.

http://dx.doi.org/10.1145/2661829.2661980 .

ment analysis [7] and social-network analysis [4] to bioinformatics
[14] and biological networks [16]. Here we focus on business intel-
ligence data, where a bipartite graph paradigm represents the buy-
ing pattern between sets of customers and sets of products. Anal-
ysis of such data is of great importance for businesses, which ac-
cumulate an ever increasing amount of customer interaction data.

original matrix

after co‐

clustering Recommendation A

Recommendation B

variables

su
b

je
ct

s

Figure 1: Matrix co-clustering can reveal the latent structure.

Discovered ‘white spots’ within a co-cluster can be coupled

with a recommendation process.

One common process in business data intelligence is the identi-
fication of groups of customers who buy (or do not buy) a subset of
products. Such information is advantageous to both the sales and
marketing teams: Sales people can exploit these insights to offer
more personalized (and thus more accurate) product suggestions to
customers by examining the behavior of “similar” customers. At
the same time, identification of buying/not-buying preferences can
assist marketing people in determining groups of customers inter-
ested in a subset of products. This, in turn, can help orchestrate
more focused marketing campaigns, and lead to more judicious al-
location of the marketing resources.

In our context, we are interested to understand the connections
between customers and products. We represent the buying patterns
as binary matrix. The presence of black square (a ‘one’) signifies
that a customer has bought a product, otherwise the square is white
(‘zero’). Given such a matrix data representation, the problem of
discovering sets of correlated sets of customers and products can
be cast as a co-clustering problem instance [1, 6, 11]. Such a pro-
cess will result in a permutation of rows and columns, such that the
resulting matrix is as homogeneous as possible. It will also reveal
any latent group structure of a seemingly unstructured original ma-
trix. Figure 1 shows an example of the original and the co-clustered
matrix, where the rows represent customers and the columns prod-
ucts.

It is apparent that the reordered matrix (Figure 1, right) provides
strong evidence on the presence of buying patterns. Moreover, we
can use the discovered co-clusters to provide targeted product rec-

ommendations to customers as follows: ‘white spots’ within a co-
cluster suggest potential product recommendations. These recom-
mendations can further be ranked based on firmographic informa-

tion of the customers (revenue, market growth, etc.).
Well-established techniques for matrix co-clustering have been

based on: hierarchical clustering [9], centroid-based clustering (e.g.,
k-Means based), or spectral clustering principles of the input matrix
[7]. As we discuss in more detail later on, each of these approaches
individually can exhibit limited scalability, poor recovery of the
true underlying clusters, or reduced noise resilience. In this work,
we present a hybrid technique that is both scalable, supporting the
analysis of thousands of graph nodes, and accurate in recovering
many cluster structures that previous approaches fail to distinguish.
Our contributions are:

• We provide a new scalable solution for co-clustering binary data.
Our methodology consists of two steps: (i) an initial seeding and
fast clustering step, (ii) followed by a more expensive refinement
step, which operates on a much smaller scale than the ambient
dimension of the problem. Our approach showcases linear time-

cost and space-complexity with respect to the matrix size. More
importantly, it is extremely noise-resilient, and easy to imple-
ment.

• In practice, the true number of co-clusters is not known a-priori.
Thus, an inherent limitation of many co-clustering approaches
is the explicit specification of the parameter K - the number of
clusters per dimension.1 Our method is more flexible, as it only
accepts as input a rough upper estimate on the number of co-
clusters. Then it explores the search space for more compact co-
clusters, and the process terminates automatically when it detects
an anomaly in the observed entropy of the compacted matrix.

• We leverage our co-clustering solution as the foundation in a B2B
(Business to Business) recommender system. The recommenda-
tions are ranked using both global patterns, as discovered by the
co-clustering procedure, and personalized metrics, attributed to
each customer’s individual characteristics.

To illustrate the merits of our approach, we perform a compre-
hensive empirical study on both synthetic and real data to validate
the quality of solution, as well the scalability of our approach, and
compare it with state-of-the-art co-clustering techniques.

Paper organization: We start in Section 2 by reviewing the re-
lated work. Section 3 describes the overall problem setting, gives
an overview of the proposed co-clustering methodology, and ex-
plains how it can be incorporated within a product recommendation
system. Section 4 describes our co-clustering technique in detail.
Section 5 evaluates our approach and compares it with other co-
clustering techniques. Finally, Section 6 concludes our description
and examines possible directions for future work.

2. RELATED WORK
The principle of co-clustering was first introduced by Hartigan

with the goal of ‘clustering cases and variables simultaneously’
[11]. Initial applications were for the analysis of voting data. Since
then, several co-clustering algorithms have been proposed, broadly
belonging to four classes: a) hierarchical co-clustering, b) spectral
co-clustering, c) information-theoretic co-clustering, and d) optimi-
zation-based co-clustering.
Hierarchical co-clustering: these approaches are typically the choice
of preference in biological and medical sciences [14, 18]. In these
disciplines, co-clustering appears under the term ‘bi-clustering’.
For an example see Fig. 2. Agglomerative hierarchical co-clustering

1In most test cases, the number of clusters per dimension is not equal. To be precise,
we use K and L to denote the number of clusters for each dimension. For clarity, we
keep only K in our discussions, unless stated otherwise.

Figure 2: Agglomerative Hierarchical co-clustering

approaches can lead to the discovery of very compact clusters and
are parameter-free; a fully extended tree is computed and the user
can decide interactively on the number of co-clusters (i.e., where
the tree is ‘cut’). Despite the high quality of derived co-clusters,
hierarchical clustering approaches come with an increased runtime
cost: it ranges from O(n2) to O(n2 log2 n) depending on the ag-
glomeration process [10], n being the number of objects. In the
general case, the time complexity is O(n3). Therefore, their ap-
plicability is limited to data with few hundreds of objects and is
deemed prohibitive for big data instances.
Spectral co-clustering: here, the co-clustering problem is solved
as an instance of graph partitioning (k-cut) and can be relegated
to an eigenvector computation problem [7]. These approaches are
powerful as they are invariant to cluster shapes and densities (e.g.,
partitioning 2D concentric circles). Their computational complex-
ity is dominated by the eigenvector computation: in the worst-case
scenario, this computation has cubic time complexity; in the case
of sparse binary co-clustering, efficient iterative Krylov and Lanc-
zos methods can be used with O(n2) complexity.2 However, in our
case, one is interested in detecting rectangular clusters; hence, com-
putationally simpler techniques show similar or even better clus-
tering performance. Recent implementations report a runtime of
several seconds for a few thousands of objects [15]. As k-Means
is usually inherent in such approaches, an estimate on the num-
ber of clusters should be known a-priori; thus, in stark contrast to
hierarchical co-clustering, spectral algorithms are re-executed for
each different K value. Spectral-based clustering techniques can
recover high-quality co-clusters in the absence of noise, but their
performance typically deteriorates for noisy data. They may also
introduce spurious co-clusters, when the data consists of clusters
with very different sizes. For visual examples of these cases, see
Figure 3.
Information-theoretic co-clustering: this thrust of algorithms is
based on the work of Dhillon et al. [8]. Here, the optimal co-
clustering solution maximizes the mutual information between the
clustered random variables and results into a K×K clustered ma-
trix, where K is user-defined. Crucial for its performance is the
estimation of the joint distribution p(X ,Y) of variables and sub-
jects; in real-world datasets, such an estimate is difficult (if not
impossible) to compute with high accuracy. According to the orig-
inal authors, the resulting algorithm has O(nz · τ ·K) time cost [8],
where nz is the number of non-zeros in the input joint distribution
p(X ,Y) and τ is the total number of iterations to converge. Only

2We should highlight that while the eigenvalue computation using these methods has
a well-studied complexity, the corresponding exact eigenvector (up to numerical accu-
racy) can be computationally hard to estimate [12]. A variant of the Lanczos method
with random starting vector, where only probabilistic approximation guarantees are
given, is proposed in [2].

original matrx 0% noise 10% noise 21% noise

Figure 3: Spectral co-clustering using the Fiedler vector. We

can observe that it cannot recover the existing co-clusters accu-

rately, even in the absence of noise.

empirical insights on the upper bound for τ have been provided.
Optimization-based co-clustering: these methodologies use vari-
ous optimization criteria to solve the co-clustering problem. Typi-
cal choices may include information-theoretic-based objective func-
tions [17], or other residue functions [5]. The computational com-
plexity is on order of O(n2).

3. PROBLEM SETTING
Assume a bipartite graph of customers versus products, where

the existence of an edge indicates that a customer has bought a
particular product. The information recorded in the graph can also
be conveyed in an adjacency matrix, as shown in Figure 4. The
adjacency matrix contains the value of ‘one’ at position (i, j) if
there exists an edge between the nodes i and j; otherwise the value
is set to ‘zero’. Note that the use of the matrix representation also
enables a more effective visualization of large graph instances.

2 4 6 8

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Figure 4: Left: Bipartite graph representation. Right: Adja-

cency matrix representation.

Initially, this adjacency matrix has no orderly format: typically,
the order of rows and columns is random. Our goal is to extract any
latent cluster structure from the matrix and use this information
to recommend products to customers. We perform the following
actions, as shown in Figure 5:

1. First, we reorganize the matrix to reveal any hidden co-clusters
in the data.

2. Given the recovered co-clusters, we extract the ‘white spots’
in the co-clusters as potential recommendations.

3. We rank these recommendations from stronger to weaker,
based on available customer information.

4. CO-CLUSTERING ALGORITHM
Our methodology accomplishes a very compact co-clustering of

the adjacency matrix. We achieve this by following a two-step
approach: the initial fast phase (Cluster phase) coarsens the
matrix and extracts elementary co-cluster pieces. A second phase
(Merge phase) iteratively refines the discovered co-clusters by pro-
gressively merging them. The second phase can be perceived as

(d)

C
LU

S
T
E
R
S A

B C D

k

Figure 5: Overview of our approach: a) Original matrix of

customers-products, b) matrix co-clustering, c) ‘white spots’

within clusters are extracted, d) product recommendations are

identified by ranking the white spots based on known and prog-

nosticated firmographic information.

piecing together the parts of a bigger puzzle, as we try to identify
which pieces (co-clusters) look similar and should be placed adja-
cent to each other.

In practice, one can visualize the whole strategy as a hybrid ap-
proach, in which a double k-Means initialization is followed by an
agglomerative hierarchical clustering. As we show in more detail
in subsequent sections, the above process results in a co-clustering
algorithm that is extremely robust to noise, exhibits linear scalabil-
ity as a function of the matrix size, and recovers very high quality
co-clusters.

To determine when the algorithm should stop merging the vari-
ous co-cluster pieces, we use entropy-based criteria. However, the
presence of noise may lead to many local minima in the entropy.
We avoid them by looking for large deviants in the entropy mea-
surements. So, we model the stopping process as an anomaly de-
tector in the entropy space. The end result is an approach that does
not require a fixed number of co-clusters, but only a rough esti-
mate for the upper bound of co-clusters, i.e., the number of clusters
given to the k-Means cluster step. From then on, it searches and
finds an appropriate number of more compact co-clusters. Because
we model the whole process as a detection of EntroPy Anomalies
in Co-Clustering, we call the algorithm PaCo for short. A visual
illustration of the methodology is given in Figure 6.

4.1 The PaCo Algorithm
Assume an unordered binary matrix XXX ∈ {0,1}N×M which we

wish to co-cluster along both dimensions. Row clustering treats
each object as a {0,1}M vector. Similarly, column clustering con-
siders each object as a {0,1}N vector derived by transposing each
column. We use K and L to denote the number of clusters in rows
and columns of XXX , respectively.

Cluster Phase: To extract elementary co-cluster structures from
XXX , we initially perform independent clustering on rows and columns.
Then, we combine the discovered clusters per dimension to form
the initial co-clusters, which we will use in the Merge phase. To

Input

Merge rows

Merge columns

Output of

k‐Means Seeding Entropy

Reduced?

Yes

(Continue

Merging)

No
Finishor

Figure 6: Overview of the proposed co-clustering process. k-

Means clustering is performed on both rows and columns and

subsequently closest block rows and columns are merged to-

gether. Entropy-based stopping criterion based on past merg-

ing operations: as long as the entropy does not deviate from the

average, the merging process continues.

achieve the above, we use a centroid-based k-Means algorithm per
dimension. To increase its efficiency, we choose the initial cen-
troids according to the k-Means++ variant [3]: this strategy gener-
ates centroid seeds that lead to provably good initial points, and has
been shown to be very stable and within bounded regions with re-
spect to the optimal solution. Moreover, recent work in approxima-
tion theory has shown that performing k-Means separately on each
dimension provides constant factor approximations to the best co-
clustering solution under a k-Means-driven optimization function
[1]. Therefore, we expect the outcome of the Cluster phase to
reside within rigid quality bounds from the optimal solution.

This phase results in a K×L block matrix. Note, that we don’t
need to explicitly indicate the number of final co-clusters. The val-
ues K and L that we provide in this phase are only rought, up-

per bounds estimates on the true number of clusters K⋆ and L⋆.
From there on, the subsequent phase tries to merge the resulting co-
clusters. As an example, in our experiments, we use K = L = 50,
because we only expect to finally display 5 to 20 co-clusters to the
end user. Note, however, that the actual values of this initial coarse
co-clustering phase do not directly affect the quality but rather the
runtime. We show this later in this analysis of the algorithm com-
plexity.

Merge Phase: We start the second phase having a K × L block
matrix. Now, the second phase gets initiated, a process of moving

blocks of co-clusters such that the rearrangement results in a more
homogeneous and structured matrix.

Therefore, in this phase we try to identify similar rows or columns
of co-clusters which can be merged. Before we define our similar-
ity measure for co-cluster blocks, we explain some basic notions.
For every cluster i in the j-th row (column resp.) of the K×L block
matrix, let s j(i) (s j(i) resp.) denote the number of cells it contains

and we use the notation 1 j(i) (1 j(i) resp.) to represent the total
number of nonempty cells (‘ones’) in the cluster i. Then, the den-

sity of this cluster is defined as d j(i) =
1 j(i)
s j(i)

(and thus d j(i) resp.).3

We easily observe that d j(i)→ 1 denotes a dense cluster. whereas
d j(i)→ 0 denotes an empty cluster.

Given this definition, to assess the similarity between the p-th
and q-th rows (columns resp.) in the K×L matrix, we treat each
block row as vectors

vp = (dp(1) dp(2) . . . dp(K))T

3Without loss of generality and for clarity, we might use d(i) to denote a co-cluster in
the matrix, without specifying the block row/column it belongs to.

and

vq = (dq(1) dq(2) . . . dq(K))T ,

with entries equal to the densities of the corresponding clusters —
we can similarly define vp and vq, but, for the sake of clarity, we
will only focus on the row case. A natural choice to measure the
distance between two vectors is the Euclidean distance: their dis-
tance in the ℓ2-norm sense is given as

D(vp, vq) =
‖vp−vq‖

2
2

K
(1)

The density vectors are normalized by their length, because the
merging process may result in different number of rows or column
blocks and, therefore, it is necessary to compensate for this discrep-
ancy (i.e., when examining whether to merge rows or columns).
Then, the merging pair of rows is given by

{p⋆, q⋆} ∈ arg min
p,q∈{1,...,K},p 6=q

D(vp, vq), (2)

where any ties are dissolved lexicographically. Figure 7 shows
two iterations of the merging process. In step r, columns 4 and
1 are merged as the most similar (smallest distance) of all pairs of
columns/rows. At step r+1, rows 6 and 2 are chosen for merging,
because now they are the most similar, and so on.

Step r + 1 Step r + 2

Figure 7: Two iterations of the algorithm.

Stopping criterion: We evaluate when the merging process should
terminate by adapting an information-theoretic criterion.

DEFINITION 1 (ENTROPY MEASURE). Consider a set of pos-

itive real numbers P = {p1, p2, . . . , pn} such that ∑
n
i=1 pi = 1. The

entropy is defined as H(P)=−∑
n
i=1 pi log pi. Since H(P)∈ [0, logn]

for every set of size n, we compare entropy values of different-sized

sets normalizing accordingly: Hn(P) =
H(P)
logn ∈ [0,1].

Entropy measures how uneven a distribution is. In our setting,
it assesses the distribution of the recovered non-empty dense co-
clusters in the matrix. By normalizing the densities by dsum =
∑

KL
i=1 d(i), we can compute the entropy of the set of normalized

densities pi =
d(i)
dsum

.

E
n

tr
o

p
y

 d
if

fe
re

n
ce

...as blocks get merged distribution

Figure 8: The differences in the entropy value can be modeled

as a Gaussian distribution.

As similar co-clusters are merged, the entropy of the matrix is
reduced. However, because noise is typically present, the first in-
crease in the entropy does not necessarily suggest that the merg-
ing process should terminate. To make the process more robust,

Input Matrix

Entropy = 0.85943

..merged columns 10 and 8

Entropy = 0.85716

..merged rows 10 and 6

Entropy = 0.85499

..merged columns 4 and 3

Entropy = 0.85268

..merged rows 5 and 4

Entropy = 0.85049

..merged rows 4 and 1

Entropy = 0.8468

..merged columns 6 and 1

Entropy = 0.83789

..merged rows 7 and 4

Entropy = 0.83145

..merged columns 3 and 2

Entropy = 0.82043

..merged columns 6 and 3

Entropy = 0.80437

..merged rows 6 and 2

Output of Double K‐Means

(10x10)

1 2 3 4 5

6 7 8 9 10

Step 2: Compact Co‐Clusters unLl entropy is minimized

Step 1: Seed Co‐Clusters

Figure 9: A sample run of our algorithm. First, the rows and columns of the matrix are clustered. Then, as long as there is no

anomaly observed in the entropy difference, a pair of either block rows or columns is merged.

the algorithm monitors the history of entropy values for the ma-
trix. We observe that the entropy differences from one matrix state
to the subsequent one follows a highly Gaussian distribution. An
instance of this for real-world data is depicted in Figure 8. There-
fore, we will terminate the merging process when a large anomaly

is observed in the matrix entropy, e.g. outside 3 standard devia-
tions from the observed history of entropy differences. This allows
the process to be particularly robust to noise and to discover the
appropriate stable state of the system.

Example: Figure 10 shows a non-fictional example of the stop-
ping criterion. Small differences in entropy (either up or down) do
not terminate the merging. However, merging the 5×5 block state
of the system into 5× 4 blocks introduces a very large anomaly.
Here the merging terminates, and the final state of the system will
be with a 5×5 block of co-clusters.

A pseudocode of the whole process described so far is provided
in Algorithm 1. Also, an actual run of the algorithm is visually
demonstrated in Figure 9. The figure shows all the inbetween merge
steps leading from a 10×10 block to a 5×5 block of co-clusters.

Complexity: The Cluster phase involves two independent k-
Means operations. The time complexity is O(M ·N ·max{K,L} · I),
where I is the number of iterations taken by the k-Means algorithm
to converge. As K,L, I are constant and fixed in advanced, the time
complexity is linear in the size of the data set. In practice, the
expected complexity for k-Means clustering is significantly lower
because we deal with very sparse matrices. In this case, the time
cost is O(nnz(XXX) ·max{K,L} · I), where nnz(XXX) is the number of
non-zero elements in the matrix. The space complexity for this
phase is upper-bounded by O(MN+max{K,L}) to store the matrix
and some additional information.

0

E
n

tr
o

p
y

D
iff

[5x5]

[5x4]

Merge columns

4 and 2

[5x5] [5x4]

3std

Figure 10: To stop the merging process we look for deviants in

the entropy distribution.

During the Merge phase, blocks of rows or blocks of columns
are merged as long as the stopping criterion is not violated; thus,
there can be at most K+L iterations. At every iteration, Steps 6 and
7 are calculated in O(KL) time cost and with O(KL) space com-

plexity. Steps 8 and 9 require the computation of
(

K
2

)
block row dis-

tances (
(

L
2

)
block column distances resp.), with O(K) time cost for

each distance computation. The space complexity is O(KL). The
merging operation in Step 13 can be computed in O(1) time. As
the number of clusters per dimension decreases per iteration (de-
pending on whether we merge w.r.t. rows or columns), we observe
that the total cost over all iterations is at most O(max{K,L}4).

Overall, the algorithm has O(M ·N ·max{K,L}· I+max{K,L}4)

Algorithm 1 The PaCo co-clustering algorithm

1: procedure {X̂XX , R, C}= PaCo(XXX , K, L) ⊲ XXX ∈ {0,1}N×M

Cluster phase

2: R= {R1,R2, . . . ,RK}← k-Means++(set of rows of XXX , K)
3: C= {C1,C2, . . . ,CL}← k-Means++(set of columns of XXX , L)

4: X̂XX ← REARRANGE(XXX , R, C)

Merge phase

5: while Stopping criterion is not met do

6: Compute the density matrix V ∈ R
K×L.

7: V(V < density_low) = 0. ⊲ Ignore “sparse” clusters
8: {mergeR,Ri,R j}← CHECK(V, R)
9: {mergeC,Cg,Ch}← CHECK(V, C)

10: If (mergeR == mergeC == False): break

11: else

12: {T1,T2}= argmax
{
{Ri,R j},{Cg,Ch}

}
⊲ Pick most similar pair

13: Merge the clusters in {T1,T2} and update X̂XX and R,K (or C,L).
14: end if

15: end while

16: function {merge,Ti,Tj}= CHECK(V, T)

17: Compute row/column distances ‖vp−vq‖
2
2, ∀p,q ∈ {1, . . . , |T|}.

18: Pick p,q with the min. distance s.t. the merged block has high
enough density-per-cocluster (e.g., ≥ density_high) and the en-
tropy increase does not deviate from the mean.

19: If no such pair exists: return {False, [], []}
20: else return {true, p,q}

time cost and O(KL+MN +max{K,L}) space complexity. Note
that K,L is the number of initial clusters in rows and columns re-
spectively, which are constant and usually small; hence, in prac-
tice, our algorithm exhibits linear runtime with respect to the matrix
size.

4.2 Parallelizing the process
The analysis suggested that the computationally more demand-

ing portion is attributed to the k-Means part of the algorithm; the
merging steps are only a small constant fraction of the whole cost.

To explore further runtime optimizations of our algorithm, we
also implemented a parallel-friendly version of the first phase. In
this way the algorithm fully exploits the multi-threading capabili-
ties of modern CPUs. Instead of a single thread updating the cen-
troids and finding the closest centroid per point in the k-Means
computation, we assign parts of the matrix to different threads.
Now, when a computation involves a particular row or column of
the matrix, the computation is assigned to the appropriate thread.

Our parallel implementation of k-Means uses two consecutive
parallel steps: (i) in the first step, called updateCentroids,
we compute new centroids for the given dataset in parallel. (ii) In
the second step, called pointReassign, we re-assign each point
to the centroids computed in the preceding step. Both steps work
by equally partitioning the dataset between threads. A high-level
pseudocode is provided in Algorithm 2.

In the experiments we show the above simple extension paral-
lelizes the co-clustering process with high efficiency. Note, that for
parallelization we didn’t use a Hadoop implementation, because
Hadoop is primarily intended for big but offline jobs, whereas we
are interested in (almost) real-time execution.

5. EXPERIMENTS
We illustrate the ability of our algorithm to discover patterns hid-

den in the data. We compare it with state-of-the-art co-clustering
approaches and show that our methodology is able to recover the

Algorithm 2 Parallelization of PaCo initialization

1: function updateCentroids(XXX , T) ⊲ T : number of threads
2: Partition rows/columns of XXX into P1,P2, . . . ,PT with cardinality |Pi|=

M/T or |Pi|= N/T , resp.
3: for each thread t in T do

4: Compute K(L) centroids C = c
(t)
1 ,c

(t)
2 , . . . ,c

(t)
K (or c

(t)
L) using Pt .

5: end end

6: Compute new centroids by summing and averaging C =

c
(t)
1 ,c

(t)
2 , . . . ,c

(t)
K .

7: function pointReassign(XXX ,C)
8: Partition rows/columns of XXX into P1,P2, . . . ,PT with cardinality |Pi|=

M/T or |Pi|= N/T , resp.
9: for each thread t in T do

10: Finds nearest centroid in C for each row (column resp.) in Pt .
11: end end

12: Reassign data rows (columns) to centroids.

underlying cluster structure with greater accuracy. We also demon-
strate a prototype of our co-clustering algorithm coupled with a
recommendation engine within a real industrial application. We
also compare the recommendation power of co-clustering with the
recommendations derived via traditional techniques based on asso-
ciation rules.

Algorithms: We compare the PaCo algorithm with two state-of-
the-art co-clustering approaches: (i) an Information-Theoretic Co-
Clustering algorithm (INF-THEORETIC) [8] and, (ii) a Minimum
Sum-Squared Residue Co-Clustering algorithm (MSSRCC) [5]. We
use the original and publicly available implementations, provided
by the original authors.4

Co-Cluster Detection Metric: When the ground truth for co-clusters
is known, we evaluate quality of co-clustering using the notion of
weighted co-cluster relevance R(·, ·) [5]:

R(M,Mopt) =
1

|M| ∑
(R,C)∈M

|R|||C||

|Rtotal||Ctotal|
·

max
(Ropt,Copt)∈Mopt

{
|R∩Ropt|

|R∪Ropt|

|C∩Copt|

|C∪Copt|

}
.

Here, M is the set of co-clusters discovered by an algorithm and
Mopt are the true co-clusters. Each co-cluster is composed of a set
of rows R and columns C.

5.1 Accuracy, Robustness and Scalability
First we evaluate the accuracy and scalability across co-clustering

techniques by generating large synthetic datasets, where the ground-
truth is known. To generate the data, we commence with binary,
block-diagonal matrices (where the blocks have variable size) that
simulate sets of customers buying sets of products and distort them
using ‘salt and pepper’ noise. Addition of noise p means that the
value of every entry in the matrix is inverted (0 becomes 1 and vice
versa) with probability p. The rows and columns of the noisy ma-
trix are shuffled, and this is the input to each algorithm.

Co-cluster Detection: Table 1 shows the co-cluster relevance of
our approach compared with the Minimum Sum-Squared Residue
(MSSRCC) and the Information-Theoretic approaches. For this
experiment we generated matrices of increasing sizes (10,000−
100,000 rows). Noise was added with probability p = 0.2. The re-
ported relevance R(·, ·) corresponds to the average relevance across
all matrix sizes. We observe that our methodology recovers almost

4http://www.cs.utexas.edu/users/dml/
Software/cocluster.html

all of the original structure, and improves the co-cluster relevance
of the other techniques by as much as 60%.

Table 1: Co-cluster relevance of different techniques. Values

closer to 1 indicate better recovery of the original co-cluster

structure.

Relevance R(·, ·) Relative Improvement

PaCo 0.99 -
MSSRCC 0.69 43%
Inf-Theoretic 0.62 60%

Resilience to Noise: Real-world data are typically noisy and do
not contain clearly defined clusters and co-clusters. Therefore, it
is important for an algorithm to be robust, even in the presence of
noise. In Figure 11, we provide one visual example that attests to
the noise resilience of our technique. Note that our algorithm can
accurately detect the original patterns, without knowing the true
number of co-clusters in the data. In contrast, we explicitly provide
the true number K⋆ = L⋆ = 5 of co-clusters to the techniques under
comparison. Still, we note that in the presence of noise (p = 15%),
the other methods return results of lower quality.5

Original Matrix Input Matrix (Shuffled)

Minimum Sum Squared Residue Information TheoreticPaCo

Figure 11: Co-clustering synthetic data example in the pres-

ence of noise. The input is a shuffled matrix containing a 5×5
block pattern. Our approach does not require as input the

true number of co-clusters K⋆,L⋆, as it automatically detects

the number of co-clusters; here, we set K = L = 10. In contrast,

for the competitive techniques, we provide K = K⋆ and L = L⋆.

Still, the structure they recovered is of inferior quality.

Scalability: We evaluate the time complexity of PaCo in compar-
ison to the MSSRCC and the Information-Theoretic co-clustering
algorithms. All algorithms are implemented in C++ and executed
on an Intel Xeon at 2.13Ghz.

The results for matrices of increasing size are shown in Fig-
ure 12. The runtime of PaCo is equivalent or lower than other
co-clustering approaches. Therefore, even though it can recover

co-clusters of significantly better quality (relative improvement in

quality 40− 60%), this does not come at the expense of extended

runtime.

Parallelization in PaCo: We achieved the previous runtime results
by running the PaCo algorithm on a single system thread. As dis-
cussed, the process can easily be parallelized. Here, we evaluate

5In the figure, the order of the discovered co-clusters is different from that in the
original matrix. The output can easily be standardized to the original block-diagonal,
by an appropriate reordering of the co-cluster outcome.

10000 20000 30000 50000 70000 100000
0

100

200

300

400

500

600

700

#rows in matrix

T
im

e
 (

s
e
c
)

Runtime

Inf Theoretic

Minimum Sum

Squared Residue

PaCO

Figure 12: Scalability of co-clustering techniques. Notice the

linear scalability of our approach.

how much further the co-clustering process can be sped up, using a
single CPU, but now exploiting the full multi-threading capability
of our system.

The computational speedup is shown in Figure 13 for the case of
at most T = 8 threads. We see the merits of parallelization; we gain
up to×5.1 speedup, without needing to migrate to a bigger system.

It is important to observe that after the 4th thread, the efficiency
is reduced. This is the case because we used a 4-core CPU with
Hyper-Threading (that is, 8 logical cores). Therefore, scalability
after 4 cores is lower because for threads 5,6,7,8 we are not ac-
tually using physical cores but merely logical ones. Still, the red
regression line suggests that the problem is highly parallel (effi-
ciency ∼ 0.8), and on a true multi-core system we can fully exploit
the capabilities of modern CPU architectures.

0

1.5

3

4.5

6

1 2 3 4 5 6 7 8

5.1
4.8

4.3
3.8

3.5

2.4

1.7

1

S
p
e
e
d
u
p

Number of Threads

Figure 13: Speedup achieved using the parallel version of

PaCo. Note that the reduction in performance after the 4th

thread was due to the fact that we used 4-core CPU with Hy-

perThreading (8 logical cores).

5.2 Enterprise deployment
We examined the merits of our algorithm in terms of robustness,

accuracy and scalability. Now, we describe how we used the al-
gorithm on a real enterprise environment. We capitalize on the
co-clustering process as basis for: a) understanding the buying pat-
terns of customers and, b) forming recommendations, which are
then forwarded to the sales people responsible for these customers.

In a client-product matrix, white areas inside co-clusters repre-
sent clients that exhibit similar buying patterns as a number of other
clients, but still have not bought some products within their respec-
tive co-cluster. These white spots represent products that constitute
good recommendations. Essentially, we exploit the existence of
globally-observable patterns for making individual recommenda-
tions.

However, not all white spots are equally important. We rank

Customers/Products View

Co‐Cluster Statistics View

Recommendations are shown

in the above clusters in red color

Figure 14: Graphical interface for the exploration of client-product co-clusters

them by considering firmographic and financial characteristics of
the clients. In our scenario, that the clients are not individuals,
but large companies for which we have extended information, such
as: the industry to which they belong (banking, travel, automotive,
etc), turnover of the company/client, past buying patterns etc. We
use all this information to rank the recommendations. The intuition
is that ‘wealthy’ clients/companies that have bought many products
in the past are better-suited candidates. They have the financial
prowess to buy a product and there exists an already established
buying relationship. Our ranking formula considers three factors:

- Turnover,TN, the revenue of the company as provided in its
financial statements.

- Past Revenue, RV, the amount of financial transactions our
company had in its interactions with the customer in the past 3
years.

- Industry Growth, IG, the predicted growth for the upcoming
year for the industry (e.g. banking, automotive, travel,...) to which
the customer belongs. This data is derived by marketing databases
and is estimated from diverse global financial indicators.

The final rank r of a given white spot that captures a customer-
product recommendation is given by:

r = w1TN+w2RV+w3IG, where ∑
i

wi = 1

Here, the weights w1,w2,w3 are assumed to be equal, but in gen-
eral they can be tuned appropriately. The final recommendation
ordering is computed by normalizing r by the importance of each
co-cluster as a function of the latter’s area and density.

Dataset: We used a real-world client buying pattern matrix from
our institution. The matrix consists of approximately 17,000 clients
and 60 product categories. Client records are further grouped ac-
cording to their industry; a non-exhaustive list of industries in-
cludes: automotive, banking, travel services, education, retail, etc.
Similarly, the set of products can be categorized as software, hard-
ware, maintenance services, etc.

Graphical Interface: We built an interface to showcase the tech-
nology developed and the recommendation process. The GUI is

shown in Fig.14 and consists of three panel: a) The leftmost panel
displays all industry categorizations of the clients in the organi-
zation. Below it is a list of the discovered co-clusters. b) The
middle panel is the co-clustered matrix of clients (rows) and prod-
ucts (columns). The intensity of each co-cluster box corresponds to
its density (i.e., the number of black entries/bought products, over
the whole co-cluster area). c) The rightmost panel offers three ac-
cordion views: the customers/products contained in the co-cluster
selected; statistics on the co-cluster selected; and potential product
recommendations contained in it. These are shown as red squares in
each co-cluster. Note that not all white spots are shown in red color.
This is because potential recommendations are further ranked by
their propensity, as explained.

By selecting an industry, the user can view the co-clustered ma-
trix and visually understand which are the most frequently bought
products. These are the denser columns. Moreover, users can visu-
ally understand which products are bought together and by which
customers, as revealed via the co-clustering process. Note that in
the figure we purposefully have suppressed the names of customers
and products, and report only generic names.

The tool offers additional visual insights in the statistics view
on the rightmost panel. This functionality works as follows: when
a co-cluster is selected, it identifies its customers and then hashes
all their known attributes (location, industry, products bought, etc)
into ‘buckets’. These buckets are then resorted and displayed from
most common to least common (see Figure 16). This functionality
allows the users to understand additional common characteristics
in the group of customers selected. For example, using this func-
tionality marketing teams can understand what the geographical lo-
cation is, in which most clients buy a particular product.

Compressibility: For the real-world data, we do not have the ground-
truth of the original co-clusters, so we cannot compute the rele-
vance of co-clusters as before. Instead, we evaluate the compress-
ibility of the resulting matrix for each technique. Intuitively, a bet-
ter co-clustered matrix will lead to higher compression. We evalu-
ate three metrics:

- Entropy, denoted as H.
- The ratio of bytes between Run-Length-Encoding and the un-

Table 2: Comparison of compressibility of co-clustered matrix for various techniques over different metrics.

Model Double k-Means Inf-Theoretic[8] MSSRCC [5] PaCo

Sector Sparsity % K = L H RLE JPEG H RLE JPEG H RLE JPEG H RLE JPEG

Education 7.9

5 0.8295 0.1528 0.9472 0.9215 0.1627 1 0.8356 0.1570 0.9064 0.8030 0.1425 0.9188

10 0.8414 0.3063 1 0.8365 0.1435 0.8766 0.9034 0.1358 0.9044 0.8132 0.1387 0.8957

15 0.9501 0.3260 0.8882 0.9787 0.1358 1 0.9171 0.1733 0.9733 0.9077 0.1261 0.8348

Government 12

5 0.8502 0.3068 0.9403 0.8832 0.2480 1 0.8703 0.2903 0.9715 0.8036 0.2641 0.9184

10 0.8788 0.2979 0.9513 0.9908 0.2560 0.7847 0.9402 0.2762 1 0.8451 0.2520 0.9334

15 0.9837 0.4444 0.9607 0.9950 0.2843 1 0.9654 0.3004 0.8196 0.9474 0.2436 0.8891

Industrial prod. 11.9

5 0.8044 0.2800 0.9719 0.9909 0.2224 0.9945 0.9571 0.2430 1 0.8044 0.2334 0.9106

10 0.8258 0.3945 0.9747 0.9191 0.2571 0.9747 0.9630 0.2402 1 0.8311 0.2292 0.9642

15 0.9606 0.2703 0.9619 0.9516 0.2237 1 0.9694 0.2361 0.9918 0.9069 0.2045 0.9306

Retail 14.2

5 0.7960 0.3558 0.9025 0.8120 0.2663 0.9788 0.8361 0.3281 1 0.7780 0.2388 0.8734

10 0.8199 0.3262 1 0.9504 0.2663 0.9108 0.9009 0.3089 0.9678 0.8179 0.2457 0.9777

15 0.9698 0.4302 0.9362 0.9288 0.2430 0.9205 0.9335 0.3336 1 0.8881 0.2320 0.8995

Services 11.4
5 0.8762 0.3342 0.8954 0.8397 0.2378 0.9783 0.8799 0.2636 1 0.7198 0.2544 0.8333

10 0.9015 0.2201 0.8892 0.8841 0.2065 0.8959 0.8880 0.2507 1 0.7423 0.1991 0.8083

recommendation

3 products combo:
Storage SW, Software Dev., Data Analysis SW 2 product combo: Server, Storage HW 3 product combo: Server, Maintenance, HW Integration.

Figure 15: Examples from the coclustered matrix using PaCo for different client industries (Retail and Wholesales & Distribution).

Notice the different buying pattern combos that we can discern visually.

Selected Cluster Statistics

Figure 16: Summarizing the dominant statistics for a co-cluster

provides a useful overview for sales and marketing teams.

compressed representation, and
- The normalized number of bytes required for compressing the

image using JPEG.
The results are shown on Table 2 (lower numbers are better), and

clearly suggest that PaCo provides co-clusters of the highest qual-
ity. Because it can better reorganize and co-cluster the original ma-
trix, the resulting matrix can be compressed with higher efficiency.

Results: Figure 15 depicts some representative co-clustering ex-

amples for subsets of clients that belong to two industries: a) Whole-
sales & Distribution and b) Retail. We report our findings, but re-
frain from making explicit mentions of product names.

- For the co-clustered matrix of the Wholesales and Distribution
industry, we observe that the PaCo algorithm recommends sev-
eral products, identified as white spots within a dense co-cluster.
The buying trend in this industry is on solutions relating to servers,
maintenance of preexisting hardware and new storage hardware.

- In the matrix shown for a subset of clients in the Retail in-
dustry, we can also observe several sets of products that are bought
together. Compared with the Wholesales industry, clients in this in-
dustry exhibit a different buying pattern. They buy software prod-
ucts that can perform statistical data analysis, as well as various
server systems in the hardware area. Such a buying pattern clearly
suggests that companies in the Retail industry buy combos of hard-
ware and software that help them analyze the retail patterns of their
own clients.

Comparing with Association Rules: Here, we examine the rec-
ommendation performance of co-clustering compared with that of
association rules. For this experiment, we use our enterprise data
and reverse 10% of ‘buys’ (ones) to ‘non-buys’ (zeros) in the orig-
inal data. Then we examine how many of the flipped zeros turn

up as recommendations in the co-clustering and the association
rules. Note that in this experiment the notion of false positive rate
is not appropriate, because some of the recommendations may in-
deed be potential future purchases. We measure the ratio f c =
f ound/changed, i.e., how many of the true ‘buys’ are recovered,
over the total number of buys that were changed. We also measure
the ratio f r = f ound/recommended, which indicates the recovered
‘buys’ over the total number of recommendations offered by each
technique.

We perform 1000 Monte-Carlo simulations of the bit-flipping
process and report the average value of the above metrics. The re-
sults for different confidence and support levels of association rules
is shown in Fig. 17. For the co-clustering using PaCo, the only
parameter is the minimum density d of a co-cluster, from which
recommendations are extracted. We experiment with d = 0.7, 0.8,
and 0.9, with 0.8 being our choice for this data. We observe that
PaCo can provide recommendation power equivalent to the one of
association rules. For example, at confidence = 0.36 we highlight
the values of the f c and f r metrics for both approaches with a red
vertical line. PaCo exhibits an equivalent f c rate to that of associ-
ation rules for support = 0.10, but the f r rate is significantly better
than for the association rules for support = 0.10, almost equivalent
with the performance at support = 0.15.

Therefore, PaCo offers equivalent or better recommendation power
than association rules. Note, though, that parameter setting is more
facile for our technique (only the density) compared to association
rules which require the input of additional parameters (both support
and confidence). More importantly, co-clustering methodologies
offer superior and global view of the derived rules.

0.1 0.2 0.3 0.4 0.5 0.60

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

min confidence

fou
nd

/ch
ang

ed

min support=0.10
min support=0.15

d=0.9

d=0.8

d=0.7

0.1 0.2 0.3 0.4 0.5 0.60

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

min confidence

fou
nd

/re
com

me
nde

d

min support=0.10
min support=0.15

d=0.9

d=0.7

d=0.8

PaCo

assoc. Rules

assoc. Rules

Figure 17: Comparing PaCo with association rules. Our ap-

proach provides comparable or better recommendation power,

without requiring setting complex parameters.

6. CONCLUSIONS
We have introduced a scalable and noise-resilient co-clustering

technique for binary matrices and bipartite graphs. Our method
is inspired by both k-Means and agglomerative hierarchical clus-
tering approaches. We have explicitly shown how our technique
can be coupled with a recommendation system that merges de-
rived co-clusters and individual customer information for ranked
recommendations. In this manner, our tool can be used as an inter-
active springboard for examining hypotheses about product offer-
ings. In addition, our approach can assist in the visual identification
of market segments to which specific focus should be given, e.g.,
co-clusters with high propensity for buying emerging products, or
products with high profit margin. Our framework automatically de-
termines the number of existing co-clusters and exhibits superlative
resilience to noise, as compared to state-of-the-art approaches.

As future work, we are interested in exploiting the presence of
Graphical Processing Units (GPUs) for further enhancing the per-
formance of our algorithm. There already exist several ports of k-
Means on GPUs, exhibiting a speedup of 1-2 orders of magnitude,
compared with their CPU counterpart [19, 13]. Such an approach
represents a promising path toward making our solution support
interactive visualization sessions, even for huge data instances.

7. REFERENCES
[1] A. Anagnostopoulos, A. Dasgupta, and R. Kumar. Approximation Algorithms

for co-Clustering. In Proceedings of ACM Symposium on Principles of

Database Systems (PODS), pages 201–210, 2008.

[2] S. Arora, E. Hazan, and S. Kale. Fast algorithms for approximate semidefinite
programming using the multiplicative weights update method. In Foundations

of Computer Science (FOCS), pages 339–348, 2005.

[3] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In
SODA, pages 1027–1035, 2007.

[4] S. Bender-deMoll and D. McFarland. The art and science of dynamic network
visualization. Social Struct 7:2, 2006.

[5] H. Cho and I. S. Dhillon. Coclustering of human cancer microarrays using
minimum sum-squared residue coclustering. IEEE/ACM Trans. Comput.

Biology Bioinform., 5(3):385–400, 2008.

[6] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum Sum-Squared Residue
co-Clustering of Gene Expression Data. In Proc. of SIAM Conference on Data

Mining (SDM), 2004.

[7] I. S. Dhillon. Co-Clustering Documents and Words using Bipartite Spectral
Graph Partitioning. In Proc. of KDD, pages 269–274, 2001.

[8] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering.
In Proc. of KDD, pages 89–98, 2003.

[9] M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and display
of genome-wide expression patterns. Proc. of the National Academy of Science

of the United States, 95(25), pages 14863–14868, 1998.

[10] D. Eppstein. Fast hierarchical clustering and other applications of dynamic
closest pairs. ACM Journal of Experimental Algorithmics, 5:1, 2000.

[11] J. A. Hartigan. Direct Clustering of a Data Matrix. J. Am. Statistical Assoc.,
67(337):123–129, 1972.

[12] J. Kuczynski and H. Wozniakowski. Estimating the largest eigenvalue by the
power and lanczos algorithms with a random start. SIAM J. Matrix Analysis and

Applications, 13(4):1094–1122, 1992.

[13] Y. Li, K. Zhao, X. Chu, and J. Liu. Speeding up k-Means algorithm by GPUs. J.

Comput. Syst. Sci., 79(2):216–229, 2013.

[14] S. Madeira and A. L. Oliveira. Biclustering Algorithms for Biological Data
Analysis: a survey. Trans. on Comp. Biology and Bioinformatics, 1(1):24–45,
2004.

[15] M. Rege, M. Dong, and F. Fotouhi. Bipartite isoperimetric graph partitioning
for data co-clustering. Data Min. Knowl. Discov., 16(3):276–312, 2008.

[16] H.-J. Schulz, M. John, A. Unger, and H. Schumann. Visual analysis of bipartite
biological networks. Eurographics Workshop on Visual Computing for

Biomedicine, pages 135–142, 2008.

[17] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu. GraphScope:
Parameter-free Mining of Large Time-evolving Graphs. In Proc. of KDD, pages
687–696, 2007.

[18] A. Tanay, R. Sharan, and R. Shamir. Biclustering Algorithms: a survey.
Handbook of Computational Molecular Biology, 2004.

[19] M. Zechner and M. Granitzer. Accelerating k-means on the graphics processor
via cuda. In Proc. of Int. Conf. on Intensive Applications and Services, pages
7–15, 2009.

