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The “crowd” has become a very important geospatial data provider. Specifically, non-expert users have been
providing a wealth of quantitative geospatial data, e.g., geotagged tweets or photos, online. With spatial
reasoning being a basic form of human cognition, textual narratives expressing user travel experiences, e.g.,
travel blogs, would provide an even bigger source of geospatial data. Narratives typically contain qualita-
tive geospatial data in the form of objects and spatial relations, e.g., “St. John’s church is to the North of
the Acropolis museum”. The scope of this work is (i) to extract these spatial relations from textual narra-
tives, (ii) to quantify (model) them and (iii) to reason about object locations based only on the quantified
spatial relations. We use information extraction methods to identify toponyms and spatial relations and
we formulate a quantitative approach based on distance and orientation features to represent the latter.
Probability density functions (PDFs) for spatial relations are determined by means of a greedy Expectation
Maximization-based (EM) algorithm. These PDFs are then used to estimate unknown object locations. Ex-
periments using a text corpus harvested from travel blog sites establish the considerable location estimation
accuracy of the proposed approach on synthetic and real world scenarios.

Categories and Subject Descriptors: H.2.8 [DATABASE MANAGEMENT]: Database Applications—Spatial
Databases and GIS

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Location Estimation, Spatial Relations, Crowdsourced Geospatial Data

1. INTRODUCTION

Off-the-shelf geospatial information services are typically based on quantitative,
coordinate-based data: maps are generated to answer geospatial questions such as
“Where is the Monastiraki Metro Station (Athens)”, based on their accurate descrip-
tive information, i.e., if such information appears in the pre-compiled database this
implies we know—within some accuracy—the coordinates of the Monastiraki Metro
Station. Such geospatial information services have been shown to be extremely useful
tools across many disciplines (c.f., [Krisp 2013], [Schiller and Voisard 2004]) ranging
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from natural research management to transportation planning and from public infor-
mation services to land use mapping. One of the reasons for the success of such services
is the perceived accuracy of the information provided. It is generated by communities
of mappers that contribute and maintain geospatial datasets. The resulting services
provide precise answers to geographic queries based on collected quantitative informa-
tion. However, the generation, processing, and preservation of such quantitative data
is costly and time consuming. While technology has helped to facilitate such geospa-
tial data collection (e.g., all smart phones are equipped with GPS positioning sensors),
curating quantitative data requires constant supervision and control in order to main-
tain a quality of service.

User-generated content has benefited many scientific disciplines (c.f., [Heipke 2010],
[Pfoser 2011], [Sui et al. 2012], [Arsanjani et al. 2015]) by providing a wealth of new
data sources. When generating geospatial data, most users are much more comfort-
able authoring qualitative geospatial data, as people typically do not use coordi-
nates to describe their spatial experiences (trips, etc.), but rely on qualitative concepts
in the form of toponyms (landmarks) and spatial relationships (near, next, north of
etc.). Thus, exploiting qualitative geospatial data, i.e., what “North of the Acropolis
museum” means in terms of real coordinates, is a very challenging user-generated con-
tent case.

In this paper, we consider supervised learning methods for quantifying qualitative
spatial relations, like “North of ”, “near to” or “next to”, in order to solve the following
problem:

PROBLEM: Given a set of objects PV with a-priori known coordinates in space, a set of
objects PU whose exact positions are unknown and a set of predefined spatial relation-
ships R between PU and PV objects, find probabilistic estimates for the positions of PU

objects in space.

To better motivate the problem, consider the following narrative: “The Acropolis Pita
place is next to the Monastiraki Metro Station.” One of the challenges here in spatially
understanding the scenario is the uncertainty associated with this statement. The
spatial expression (“next to”) might be interpreted differently by the various users.
For example, it is apparent that the relation “next to” does not imply any orientation
(e.g., “west of”, “east of”, etc.). Nevertheless, given a predefined grid of points over
and around the Monastiraki Metro station, we desire to associate probabilities to each
location on the grid as candidate positions of the “Acropolis Pita place”. The probabil-
ities assigned are drawn according to probabilistic models, trained and learned using
narratives including the “next to” relation in a region relatively close to the point of in-
terest (POI). As such, we want to quantify what people imply when they say “next to”.
Being able to do so might allow us to actually discover the “Acropolis Pita place” (see
Figure 1 for a toy example explanation). Eventually, by collecting more observations
that mention the “Acropolis pita place” using qualitative spatial relations, we will be
able to refine the unknown location and, thus, locate places that otherwise could not
be geocoded.

From the above discussion, it is obvious that the problem at hand involves high un-
certainty, especially when the geospatial information source is user-generated. More-
over, the transition from textual data (travel blogs) to location estimation of unknown
POIs based on crowdsourced spatial relations is not at all straightforward. We there-
fore use a text mining preprocessing step. We employ Natural Language Processing
(NLP) tools and algorithms in order to extract spatial entities (POIs) and spatial re-
lations between them (see Section 2). Following a probabilistic approach, we quantify
the extracted spatial relations as PDFs. We first learn spatial relation models between
known POIs, i.e., focused over a predefined region of interest (i.e., Athens) and given
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A

Fig. 1. Quantifying a spatial relation - Point A corresponds to a known reference POI (Monastiraki Metro
Station) and the arrows on the predefined grid, correspond to probabilities of spots being the “Acropolis
Pita place next to” point A. The higher the arrow, the higher is the probability that the location of interest
(Acropolis Pita place) lies at the corresponding grid point.

POI pairs with known locations and linked together by a specific spatial relation, we
train the corresponding spatial relation PDF comprised of distance and orientation
(cf. Section 3). Here a greedy Expectation Maximization-based (EM) algorithm is used.
The trained probabilistic models can then be used for a location estimation tasks.

Given a specific spatial relation instance of the form (Pu, Ro, Pv) and by employing
the trained model for spatial relation Ro, we can associate probabilities with each
point on the discretized space. These probabilities are then used to estimate unknown
POI locations. The more observations we have with respect to an unknown location,
the more precise will be the estimate of the unknown POI’s location. Actual location
estimation experiments using textual narratives from travel blogs, establish the
validity and quality of the proposed approach.

Our contributions can be summarized as follows:

(i) We quantify qualitative spatial relations using a probabilistic path as presented in
our previous work (c.f. [Skoumas et al. 2013]).

(ii) We propose a grid based algorithm, which performs location estimation based on the
aforementioned probabilistic models.

(iii) We evaluate our location prediction algorithm with extended experiments on both
synthetic and real world location prediction scenarios.

2. TEXTUAL NARRATIVES AND QUALITATIVE SPATIAL RELATIONS

The resource in this work is textual narrative and this section describes the basic
preprocessing steps needed to extract qualitative spatial data in the form of relations
from it. In terms of content sources, we focus on travel blogs as a potentially rich
geospatial data source. This selection is based on the fact that people tend to describe
their experiences in relation to their location, which results in “spatial narratives”.
To gather such data, we use classical Web crawling techniques [Drymonas and Pfoser
2010] and compile a database consisting of 250,000 texts, obtained from 20 travel blogs.

Obtaining qualitative spatial relations from texts involves the detection of (i) spatial
objects, i.e., Points-of-Interest (POIs) or toponyms, and (ii) spatial relations linking the
POIs. Our approach involves geoparsing, i.e., the detection of candidate phrases, and
geocoding, i.e., linking parts of phrase/toponym to actual coordinate information.
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2.1. Textual Narratives, POIs, and Spatial Relations
The extraction of qualitative geospatial data from texts requires the utilization of effi-
cient NLP tools to automatically extract and map phrases to spatial relations. In the
past, the extraction of semantic relations between entities in texts has been developed
in [Bunescu and Mooney 2006], [Fader et al. 2011], [Akbik and Broß ], [Mesquita et al.
2013] and [Zelenko et al. 2002], while extraction of spatial relations (mostly topological
relations) from texts is analyzed in [Kordjamshidi et al. 2011], [Yuan 2011], [Loglisci
et al. 2012], [Zhang et al. 2011], and recently in [Wallgrün et al. 2014]. While the above
works are related to the current effort and problem setting, we implemented a special-
ized spatial relation extractor that addresses the problem of noisy crowdsourced data.
The implementation is based on the Natural Language Processing Toolkit (NLTK)
[Loper and Bird 2002], a popular Python natural language processing library.

Using NLTK, we managed to initially extract approximately 500,000 POIs1 from our
travel blog corpus. For the geocoding of the POIs, we rely on the GeoNames2 geograph-
ical gazetteer, which has global coverage and contains over ten million places. This
procedure associates (whenever possible) geographic coordinates with POIs found in
the travel blogs using string matching based on the Levenshtein string distance met-
ric [Hirschberg 1997]. Using the GeoNames gazetteer, we managed to geocode about
480,000 out of the 500,000 extracted POIs3.

Having detected and geocoded sets of POIs, the next step is to extract spatial rela-
tions. ReVerb [Fader et al. 2011] and EXEMPLAR [Mesquita et al. 2013] are available
software tools for the extraction of semantic (not necessarily spatial) relations between
identified entities in texts. Besides not being tuned to spatial relations, experimenta-
tion showed that they perform poorly for our noisy crowdsourced data. To this end, we
design a more specialized spatial relation extraction algorithm, based on NLTK [Loper
and Bird 2002] components and predefined strings and tag sequences. Specifically, we
have a manually annotated dataset (c.f. [Skoumas et al. 2013]), i.e., 12000 sentences
with two or more POIs, which result in about 1500 “clean” spatial relation instances
between POIs. We use 80% of the “clean“ spatial relation instances with NLTK to ex-
tract the part-of-speech tag sequences, which contain POIs and spatial relations. Each
extracted tag sequence becomes a “rule”, which we use to extract spatial relations.
This is a very common information extraction technique discussed in [Loper and Bird
2002] (Chapter 7). It turns out that the use of, both, tag sequences and string matching
reduces the number of false positives considerably. 4

1The POI extraction procedure contains three steps. Initially, we use NLTK’s word tokenizer to tokenize
each sentence. NLTK’s Maximum Entropy part of speech (POS) tagger is used with the Penn Treebank tag
set trained over the Penn Treebank corpus to obtain POS tags for each token of each sentence. Finally, we
use NLTK’s Maximum Entropy chunker for the Named Entity (POIs) recognition task. Named entities are
definite noun phrases that refer to specific types of individuals, such as organizations, persons, dates, and so
on. In our case, the chunker will only recognise POIs which are mentioned via a proper name, e.g., “Monas-
tiraki Metro Station”. The chunker is trained on the ACE corpus and we extract Locations, Organizations,
Facilities and Geo-political entities (GPEs) as they are described in [Loper and Bird 2002] (Chapter 7).

2http://www.geonames.org/
3Nowadays there are many available geo-taggers (Google Geocoding API, Yahoo Geocoding API). Unfor-

tunately, all of them have a small free geocoding quota, which becomes a serious problem when one needs to
geocode a large number of POIs. A workaround is the use of gazetteers and custom solutions. This is why we
also used the Geonames gazetteer. Another problem that arises in geocoding is Named Entity disambigua-
tion, typically characterized by more than one POI with the same name in a gazetteer. Disambiguation is
simpler in our case as we only consider sentences that contain two or more POIs and we geocode a POI only
if it is included in an extracted triplet of the form (POI1, Relation, POI2). If two or more candidates exist
for each POI of a triplet, we use the Minimum Kilometric Distance feature [Pouliquen et al. 2006], i.e., we
keep the candidates that are closest in space and within a limit of 20km (city scale).

4As an example, consider the following phrase. “Deutsche Bank invested 10 million dollars in Brazil.”.
Here, a simple string matching solution would extract a triplet of the form (Deutsche Bank, in, Brazil), which
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The quality of the various algorithms is summarized in Table I. Having the three al-
gorithms extract the relationships from the remaining 300 (20%) manually annotated
sentences shows that our NLTK based method and EXEMPLAR perform better than
ReVerb in terms of precision and recall. While our NLTK approach seems to have a
slightly lower precision than EXEMPLAR, it achieves a higher recall, i.e., cases for
which the fraction of extracted relations relevant to the query is larger.5

Table I. Precision and recall for three different spatial relation extraction ap-
proaches.

Method Precision Recall

EXEMPLAR [Mesquita et al. 2013] 0.71 0.40
ReVerb [Fader et al. 2011] 0.15 0.43

NLTK [Loper and Bird 2002] 0.60 0.82

2.2. RELEX Algorithm
The resulting RELEX (Relation Extraction) algorithm (Algorithm 1) integrates POI
and relation extraction as described above in a single method. Initially, the raw text
document is segmented into sentences (Step 3). Each sentence is further subdivided
(tokenized) into words and tagged for part-of-speech (Steps 5-6). Named entities (POIs)
are identified (Step 7). We typically look for relations between specified types of named
entities, which in NLTK are Organizations, Locations, Facilities and Geo-Political En-
tities (GPEs). In case there are two or more named entities in a sentence, we check if
any of the predefined tag sequences applies (Step 12). If so, we check if a spatial rela-
tion instance from our relation catalog exists (string matching) (Step 14). Should there
be a match, we record the extracted triplet (Steps 15-18). Thus, a result comprises a
triplet O of the form (Pu, Ro, Pv), in which Pu and Pv are named entities of the required
types and Ro is the observed spatial relation that relates to Pu and Pv.

A relation extraction example is shown in Figure 2. Here, the sentence “Boston is
near New York” is analyzed as explained and two named entities are identified as
GPEs.

Fig. 2. Example of a POS tagged word sequence with embedded Named Entities.

We first check if the tag sequence “GPE (set of NNPs) - present verbal form (VBZ)
- preposition/subordinating conjunction (IN) - GPE (set of NNPs)” exists in our set of

is a false positive. In our approach, the use of predefined tag sequences avoids this kind of mistakes. On the
other hand, for the phrase “Deutsche Bank invested 10 million dollars in Rio de Janeiro, which is “in
Brazil.” our NLTK based algorithm would extract a triplet of the form (Rio de Janeiro, in, Brazil), which is
a true positive.

5At this point, we highlight the fact that EXEMPLAR and ReVerb extract more than just spatial rela-
tions, which is the cause of their lower performance. Our NLTK based method performs slightly better as it
has been trained to extract spatial relations only extracted from a noisy crowdsourced dataset.
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ALGORITHM 1: RELEX - Spatial Relation Extraction
Input: A database of texts T , a set of tag sequences A, a set of spatial relation strings R
Output: A set of triplets O of the form (Pu, Ro, Pv) where Pu 6= Pv and Ro ∈ R

1 begin
2 foreach text t ∈ T do
3 Extract sentences from t into set S
4 foreach sentence s ∈ S do
5 Token s using NLTK
6 PosTag s using NLTK
7 Identify named entities using NLTK
8 if two or more named entities in s then
9 Extract POI pairs in P

10 foreach p ∈ P do
11 pA ← Extract tag sequence of p
12 if pA ∈ A then
13 pR ← Extract string pattern of p
14 if pR ∈ R then
15 Pu ← p(1)
16 Pv ← p(2)
17 Ro ← pR
18 O.PUSHTRIPLET(Pu, Ro, Pv)
19 end
20 end
21 end
22 end
23 end
24 end
25 return O
26 end

predefined spatial relation tag sequences. Performing string matching on the interme-
diate chunks (“near”) results in the triplet (New York, Near, Boston).

Algorithm 1 extracted approximately 500,000 triplets from our travel blog corpus
consisting of 250,000 texts. Figure 3, shows a small sample of a Spatial Relationship
Graph, i.e., a spatial graph in which nodes represent POIs and edges label spatial
relationships existing between them. The graph visualizes a sample of the spatial re-
lationship data collected for New York city. In this work we extracted spatial relation
data for four different cities, i.e. London, New York, Paris and Beijing. All four city
datasets will be used in the experimental evaluation of our location estimation ap-
proach in Section 5.

3. SPATIAL RELATION MODELING
To increase the usefulness of qualitative spatial data it needs to be quantified, i.e.,
translating expressions such as “near” to actual distances. Our proposal is to use prob-
abilistic modeling for this task. This approach includes the selection and extraction
of respective features (distance and direction), as well as the methods to train and
optimize the probabilistic model.

3.1. Feature Extraction
We model a spatial relation between two POIs Pu, Pv in terms of distance and orien-
tation features. Assuming a projected (Cartesian) coordinate system, the distance is
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Fig. 3. Small sample of a spatial relationship graph for New York city.

computed as the Euclidean metric between the two respective coordinates, while the
orientation is established as the counterclockwise rotation of the x-axis, centered at
Pv, to point Pu. For a concise and consistent mathematical formalization, consider that
for each instance of each relation, we create a two-dimensional Spatial Feature Vector
X = (Xd, Xo)ᵀ, where Xd denotes the distance and Xo denotes the orientation between
Pu and Pv. Several instances of a spatial relation lead to a set of two-dimensional spa-
tial feature vectors, which we denote as X = {X1, X2, . . . , Xn}. Each spatial feature
vector set will be used to train one probabilistic model for each spatial relation.

An example of the feature extraction procedure is illustrated in Figure 4, where
four instances of spatial relation Near are used in order to create the respective set
of spatial feature vectors Xnear = {[Xd1, Xo1]ᵀ, [Xd2, Xo2]ᵀ, [Xd3, Xo3]ᵀ, [Xd4, Xo4]ᵀ}. In
this scenario, PV = {A,D,E,G} is the set of reference points and PU = {B,C, F,H} is
the set of points described based on the reference points.

3.2. Probabilistic Modeling

The next modeling step is the mapping of a feature vector representing spatial re-
lations to pre-selected probability density functions (PDFs). Recent research on the
quantitative representation of spatial knowledge has been conducted in relation to sit-
uational awareness systems, robotics, and image processing. Modeling uncertain spa-
tial information for situational awareness systems is discussed in [Kalashnikov et al.
2006] and [Ma et al. 2009]. The authors propose a Bayesian probabilistic approach to
model and represent uncertain event locations described by human reporters in the
form of free text. Estimation of uncertain spatial relationships in robotics is addressed
in [Smith et al. 1990]. A probabilistic algorithm for the estimation of distributions over
geographic locations is proposed in [Hays and Efros 2008] where a data-driven scene
matching approach is used in order to estimate geographic information based on im-

ACM Transactions on Spatial Algorithms and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 G. Skoumas et al.

y

x

A

B

C

D F

G

H

E

Xo1

Xo2

Xo3

Xo4

Xd1

Xd2

Xd3

Xd4

Fig. 4. Distance and orientation feature extraction procedure. In this case the respective triplets are
(B,Near,A) , (C,Near,D), (F,Near,E) and (H,Near,G).

ages. Finally, image similarity based on quantitative spatial relationship modeling is
addressed in [Wang and Makedon 2003]. Based on the nature of the features extracted
as explained in the previous section, we follow the modeling approach we outlined in
[Skoumas et al. 2013].

Specifically, given the training data, e.g., a set of spatial feature vectors X for each
spatial relation, we estimate a continuous density distribution using a Gaussian Mix-
ture model (GMM) for each of these relations. The intuition is that people use and
understand spatial relation phrases differently. This results in multi-component distri-
butions of the features. Figure 5 illustrates a representative PDF example of distance
and orientation features for the spatial relation “South”, which strengthens further
our intuition.

Moreover, in [Li and Barron 1999] it is shown that for any heterogeneous multi-
dimensional data that originates from an arbitrary PDF p(·), there exists a sequence of
finite mixtures pk(x) =

∑k
i=1 wig(x; θi) that achieves Kullback-Leibler (KL) divergence

D(p||pk)−D(p||gp) ≤ O(1/k)

for any gp =
∫
g(x; θ)P (dθ), i.e., one can achieve a good approximation with rate O(1/k)

by using a k-component mixture of g(x; ·). Furthermore, this bound is achievable by
employing a greedy training schema [Li and Barron 1999].

Other approaches to estimate a continuous densities for spatial relations could be
non-parametric. A well known example of such an approach is Kernel Density Estima-
tion (KDE). In the experimental Section 5 of this work, we show that the GMM based
approach outperforms KDE in terms of location estimation accuracy.

In general, a GMM is a weighted sum of M component Gaussian densities as
p(x|λ) =

∑M
i=1 wig(x;µi,Σi), where x is a d-dimensional data vector (in our case d = 2),

wi are the mixture weights, and g(x;µi,Σi) is a Gaussian density function with mean
vector µi ∈ Rd and covariance matrix Σi ∈ Rd×d. To fully characterize f , one requires
the mean vectors, the covariance matrices and the mixture weights. These parameters
are collectively represented in λ = {wi, µi,Σi} for i = 1, . . . ,M .

In our setting, each spatial relation is modeled as a 2-dimensional GMM, trained
on each relation’s spatial feature vector set. We assert that distance and orientation
features are informative enough to model spatial relationships in a Cartesian con-
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Fig. 5. Distance and orientation feature for spatial relation South with the respective PDF.

text. For the parameter estimation of each Gaussian component of each GMM, we
use Expectation Maximization (EM) (cf. [Dempster et al. 1977]). EM enables us to up-
date the parameters of a given M -component mixture with respect to a feature vector
set X = {X1, . . . , Xn} with 1 ≤ j ≤ n and all Xj ∈ Rd, such that the log-likelihood
L =

∑n
j=1 log(p(Xj |λ)) increases with each re-estimation step, i.e., EM re-estimates

model parameters λ until L convergence.
Finally, a main issue in probabilistic modeling with mixtures is that a predefined

number of components is neither a dynamic nor an efficient and robust approach. The
optimal number of components should thus be decided based on each dataset. In this
work, we employ the greedy learning approach detailed in [Skoumas et al. 2013], to
dynamically estimate an optimized number of components in a GMM (cf. also [Verbeek
et al. 2003]).

At this point, we highlight that the proposed spatial relation modeling scheme is
distribution independent. With the necessary tweaks, one can transform the schema
to use mixtures of any distribution type. Such a selection is user-defined. However,
its application would be much harder in practice. We use mixtures of PDFs, since it
was shown in [Li and Barron 1999] that densities of heterogeneous and noisy data,
such as our case of crowdsourced data, can be approximated by a sequence of finite
mixtures. We particularly use GMMs due to their simplicity and their generally low
classification errors (c.f., [Bishop 2006] and [Duda et al. 2001]). The results we obtain,
and which we will thoroughly analyze in Section 5, encourage their use in practice.
Thus, GMMs provide a challenging baseline for potentially better mixture models to
be explored in future work.

To visualize the actual models and the respective probabilities they assign to par-
titioned space, Figure 6 depicts three instances of spatial relations, with the center
of the grid denoting a reference (landmark) point. The spatial extent of relations (a)
“Near”, (b) “At” and (c) “West” when searching for an unknown point that is spatially
related to the center of the grid. The examples have been derived from the New York,
London, and Beijing datasets.

4. LOCATION ESTIMATION WITH SPATIAL RELATIONSHIP FUSION
Location estimation in the context of this work refers to reasoning about object loca-
tions based on their spatial relations to known locations. Using the probabilistic mod-
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(a) Near the grid center (b) At the grid center (c) West of grid center

Fig. 6. Spatial extension of spatial relationships - probabilities of specific spatial relationships (Near, At,
West) relating vertices to the center grid cell.

els of spatial relations, we outline two approaches for solving this location estimation
task.

4.1. Naı̈ve Method
Spatial relations can be considered as links connecting spatial objects. A simple ap-
proach one could follow to estimate the location of an unknown POI would be to cal-
culate the mean location of the connected known POIs combined with a user defined
spatial extent, e.g., a 1km radius around the mean location. However, this would con-
tain quite high uncertainty and would be close to a random selection as it does not
consider the semantics of the link (qualitative spatial relations). Experimentation will
compare this naı̈ve approach to a grid-based method described in the following section.

4.2. Grid-based Approach
Spatial relations are essentially observations, which correlate objects in space. Having
quantified them by employing probabilistic models allows us to reason about locations
taking uncertainty into account. Our goal now is to show how such probabilistic models
can be employed in location estimation scenarios. Unknown locations can be estimated
by fusing spatial relationship observations to known POIs (landmarks).

The QLEST (Qualitative Location Estimation) algorithm (Algorithm 2) details our
location estimation method for an unknown POI Pu and a given set of triplets T of the
form (Pu, Ro, Pv) about Pu. Here, Pv ∈ PV is a landmark POI in a set of landmarks
PV . QLEST is a grid based approach, where given a predefined grid of points over
and around a landmark POI Pv, we desire to associate probabilities to each vertex on
the grid as candidate positions of the unknown POI Pu. The probabilities assigned are
drawn according to probabilistic models, trained and learned as described in Section 3.
Finally, all the assigned probabilities are aggregated in order to define the overall
probability of each grid cell.

The first step is to discretize space by partitioning it with respect to grid vertices
(Step 2). For example, for a grid dimensionality GD = 15, we have 15×15 = 225 grid
vertices and 14×14 = 196 grid cells (regions). Next, for each triplet t we load the GMM
relationship model Ĝ′

, which corresponds to spatial relation Ro (Step 4). Then, we
calculate the distance and orientation between each grid vertex gv and the respective
landmark Pv of the loaded triplet and create a spatial feature vector X (Steps 6-8). We
calculate the probability of spatial vector X given the selected relationship model Ĝ′

and store it in matrix VL (Steps 9-10). In this way, we assign likelihoods to each vertex
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of the grid for each given triplet t. Finally, all likelihoods per vertex are summed up
and normalized in FVL (Step 11) and a probability is assigned to each grid cell (region)
RL (Step 12). The overall likelihood of a grid cell is calculated as the mean value of the
likelihoods of its four vertices.

ALGORITHM 2: QLEST - Qualitative Location Estimation

Input: A set of trained GMMs Ĝ, a bounding box BB, grid dimensionality in GD, an
unknown POI Pu to locate, a set of landmark POIs PV , and a set of triplets T of the
form (Pu, Ro, Pv)

Output: Each region’s (grid cell) likelihood RL

1 begin
2 GV ← Calculate grid vertices for BB based on GD
3 foreach t ∈ T do

4 Ĝ
′
← Load GMM for spatial relation Ro of triplet tu

5 foreach gv ∈ GV do
6 X ← [0, 0]
7 X[1]← Calculate distance between gv and Pv

8 X[2]← Calculate orientation between gv and Pv

9 Lgv ← P (X|Ĝ
′
)

10 VL.PUSHLIKELIHOOD(Lgv)
11 end
12 end
13 FVL ← Sum and normalize each vertex’s likelihoods in VL
14 RL ← Calculate each region’s likelihood using FVL

15 return RL
16 end

An example of a QLEST run is shown in Figure 7, where we estimate grid cell like-
lihoods for each triplet of a given set of N triplets. Finally, all grid cell likelihoods are
fused in order to give the final region likelihoods RL. The presented QLEST method,
which fuses (spatial relationship) observations to estimate unknown point locations,
will be used in the following experimental section in the context of synthetic and real-
world location estimation scenarios.

RL

Likelihoods based on triplet 1

Likelihoods based on triplet N

Fig. 7. Example of a QLEST run where grid likelihoods based on a set of N triplets T are fused.
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5. LOCATION FUSION EXPERIMENTS
To assess the quality of the probabilistic spatial modeling and location estimation ap-
proach, we perform an extensive experimentation using synthetic and real-world loca-
tion estimation scenarios. All text processing has been implemented in Python, while
the relationship modeling and location estimation methods were implemented in Mat-
lab.

5.1. Location Estimation for Synthetic Scenarios
We first assess location estimation using a synthetic data scenario. To generate POIs
and spatial relations that connect them, we follow an approach similar to that of Al-
gorithm 2, i.e., we discretize space by partitioning it with respect to grid vertices GV ,
which will be used as known POIs, and we then generate a random point representing
an unknown POI Pu. For each grid vertex gv ∈ GV , we calculate the distance and ori-
entation from Pu and create the spatial feature vector X. Finally, we pick the spatial
relationship GMM Ĝ′

that maximizes the likelihood of X. Under a mathematical for-
malization this means that Ĝ′

is picked as Ĝ′ ← arg max
g∈Ĝ

P (X|g, gv), where Ĝ is again

a set of trained spatial relation GMMs. Thus, for each random point Pu we generate a
set of triplets of the form (Pu, Ro, Pv), with Pv always being a grid vertex (the number
of triplets is equal with the number of vertices). Following this procedure, we generate
1000 location prediction scenarios for each of our four city datasets.

To provide some baseline results, we define a 1-component baseline (BSL) model,
which is a GMM model p(x|λ) =

∑M
i=1 wig(x;µi,Σi) with M = 1 (simple Gaussian

distribution). We will compare three models, the BSL model, the KDE model, and our
optimized (optimized number M of Gaussian components) GMM model (OPT) trained
as described in Section 3.2.

Figure 8 illustrates the approach by means of four (very challenging) examples in
the Beijing area. The red stars in column one (Figures 8(a)(c),(e),(g)) illustrate the
random points that were generated. Column two (Figures 8(b),(d),(f),(h)) show the as-
signed probabilities of each region after a full run of Algorithm 2. We observe that our
approach assigns the highest probability to the grid cell where the random point was
generated for the first two cases (Figures 8(a),(b),(c),(d)), while the prediction is also
very accurate, i.e., the are high probabilities around the generated points, for the other
two cases (Figures 8(e),(f),(g),(h)).

Additionally, for the 1000 generated points we consider the cases in which the
randomly generated point’s region is among the Top-k predicted regions with k =
{1, 5, 10, 20}, respectively. The prediction accuracy results are shown in Figure 9. The
results show the superior performance of the OPT model against, both, BSL and KDE
models, with the KDE model performing slightly better than the BSL model. Addi-
tionally, Table II and III show the actual prediction accuracy improvement of the OPT
model with respect to the BSL model and the KDE model, respectively. In some cases
(indicated in bold) the prediction accuracy improvement is equal to, or greater than
30%.

Finally, based on the qualitative spatial relation rules between points described in
[Papadias and Sellis 1994], we measure the percentage of selected models Ĝ′

that are
qualitatively correct, i.e., they reveal a true spatial relation between a vertex and a
random point. Figure 10 shows the percentage of qualitatively correct models Ĝ′

. The
percentage of OPT models is considerably higher than that of KDE and BSL models
(with the KDE model performing slightly better than the BSL model in most cases).
Table IV shows this improvement in relative terms. In some cases (indicated in bold)
the qualitative accuracy improvement is more than 10%. The inherited noise in crowd-
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Fig. 8. Synthetic location estimation scenarios in the Beijing area. Column one - (a), (c), (e) and (g) - shows
the generated point with a red star. Column two - (b), (d), (f) and (h) - shows the probability of each region
after a full run of Algorithm 2 using heatmap colors.
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Fig. 9. Location prediction accuracy: prediction accuracy of (a) the BSL, (b) the KDE model, and (c) the OPT
model, for k values 1, 5, 10, 20, respectively.

Table II. Prediction accuracy improvement of the optimized model
(OPT) compared to the baseline model (BSL).

OPT improvement per Top-k case

Dataset k = 1 k = 5 k = 10 k = 20

London +34% +40% +44% +42%
New York +50% +53% +51% +50%
Paris +21% +27% +30% +29%
Beijing +24% +16% +16% +15%

Table III. Prediction accuracy improvement of the optimized model
(OPT) compared to the kernel density estimate model (KDE).

OPT improvement per Top-k case

Dataset k = 1 k = 5 k = 10 k = 20

London +28% +38% +39% +37%
New York +46% +48% +45% +49%
Paris +18% +21% +36% +25%
Beijing +21% +13% +15% +15%

sourced data is the reason for the error that is evident in some cases. Specifically, some
of the models are similar, i.e., they return similar probabilities, although they express
qualitatively different spatial relations.
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Fig. 10. Percentage of qualitatively correct spatial relation models for BSL, KDE and OPT models.

Table IV. Qualitative accuracy improvement when us-
ing optimized model (OPT) compared to baseline model
(BSL) and kernel density estimate model (KDE).

OPT Improvement

Dataset BSL KDE

London +8% +6%
New York +11% +9%
Paris +13% +7%
Beijing +9% +4%

5.2. Location Estimation for Real-world Scenarios
The ultimate goal of this work is to train probabilistic models so as to provide location
estimates for cases such as finding the “The Acropolis Pita place” based on relative
qualitative spatial relationships discovered in textual narratives. This is a potentially
important method, as it provides a solution to the geocoding problem that exists for
user-contributed data on the Web, i.e., there is a myriad of mentioned POIs and loca-
tions whose coordinates do not exist in any gazetteer.

In addressing this challenge, we present extensive location estimation experiments
on 3,000 real world scenarios extracted from all four datasets as they were presented
in the Section 5.1. (about 800 real scenarios per region). We extract 3,000 POIs (consid-
ered as unknown) whose locations are given in (spatial) relation to known POIs. Note
that these cases have not been used in the training phase. The experiments will also
show the impact of the number of components per spatial relationship model on the
quality of the location estimation outcome, e.g., the performance improvement when
using the OPT instead of the BSL or KDE models. The spatial relation fusion proce-
dure in the real-world scenarios is the same as presented in Algorithm 2. It only differs
in that the reference landmarks are actual POIs (not grid vertices) extracted from tex-
tual narratives, and that we use the observed, in text, spatial relation model instead
of the selected model Ĝ′

.

5.2.1. Naı̈ve Method. The first experiment estimates the location of an unknown POI
using BSL, KDE ,and OPT models and compares the result to the mean location of all
referenced POIs (cf. Section 4.1). The results for all four datasets are given in Figure 11.
The one-component BSL model provides better location estimation (the highest prob-
ability predicted point is closer to the unknown POI than the mean location) when
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compared to the mean location. It is closer to the actual POI’s location in 56%, 57%,
70% and 80% of the cases, for the datasets of London, New York, Paris and Beijing, re-
spectively. The KDE model improves prediction accuracy by 3% to 5% in all cases, i.e.,
4%, 5%, 3% and 4% for each respective dataset. Finally, the OPT model improves the
results further by 12%, 20%, 16% and 10% for each respective dataset. There are cases
in which the mean location is closer to the unknown POI location than the predicted
location of the BSL, KDE, and OPT models. Table V shows the actual average distance
gap in percent for each dataset. The results show that, while not outperforming the
mean location in a small number of cases, the predicted location is still close to the
computed mean location. The results show that for scenarios with good data coverage
such as Beijing (many spatial relationships extracted from texts), the spatial probabil-
ities almost always (> 90%) outperform a naı̈ve method, and even if they do not, they
produce similar results.
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Fig. 11. Location prediction accuracy. Percentage of real scenarios - center of spatial probability density
closer than the mean location of referenced POIs.

Table V. Comparing naı̈ve method to models - average relative er-
ror in % (0% means same computed position).

Dataset BSL KDE OPT

London 29% 28% 27%
New York 26% 24% 22%
Paris 19% 18% 16%
Beijing 12% 11% 11%

5.2.2. Location Estimates. Having established the validity of our approach, we want to
measure the distance of the estimated to the actual POI location. Tables VI and VII
illustrate the percentage of location estimation scenarios belonging to the pre-defined
distance buckets of 0 − 2km, 2 − 4km, 4 − 6km, 6 − 8km and > 8km. The tables show
the location estimate errors for the model pairs BSL and OPT, and KDE and OPT
model for all four city datasets. To interpret the results we can observe that the more
results fall into the shorter distance buckets (smaller error), the better the estimates
are for the specific model case. Again, an improvement of the result quality can be
observed when contrasting the BSL and OPT models. The latter accumulates more
estimates in the shorter distance buckets. A similar observation can be made when
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contrasting the KDE and OPT models, with the KDE model performing again slightly
better than the BSL model in most of the cases. Specifically, for the case of London
and New York there is an increase (indicated in bold) in the first (0 − 2km) and third
(4−6km) bucket percentages in Table VI, and in the first (0−2km) and second (2−4km)
bucket percentages in Table VII, while for the Paris and Beijing datasets there is an
increase in the first (0 − 2km) and second (2 − 4km) distance buckets in both tables.
This means that by using the OPT method, we obtain more precise location estimates
than by using BSL or KDE models.

Assuming a perfect method, all results would be in the first bucket. The case of
Beijing, with many available spatial relations, comes close to this ambition as 29%
and 35% (64% total) of the estimates are within 2km and 4km of the actual location,
respectively. Moreover, Figure 12(a) shows the mean, and Figure 12(b) the median
error expressed in km for BSL, KDE and OPT models for all four datasets, respectively.
In most cases, the mean and median error is close to 4km (4.1km < MeanError <
4.6km, 4km < MedianError < 4.3km) for BSL and KDE models with small variations.
The OPT model outperforms, again, both, BSL and KDE models by achieving mean
and median errors that are small than 4km (3.9km < MeanError < 4.1km, 3.6km <
MedianError < 3.9km) in almost all cases.

Table VI. Prediction accuracy in terms of estimated distance from the unknown POI
location. BSL vs. OPT models.

Dataset
London New York Paris Beijing

Distance BSL OPT BSL OPT BSL OPT BSL OPT

0-2 km 8% 11% 14% 24% 10% 12% 21% 29%
2-4 km 36% 33% 43% 33% 30% 33% 22% 35%
4-6 km 30% 31% 21% 30% 37% 35% 39% 21%
6-8 km 17% 16% 15% 9% 16% 15% 13% 11%
> 8 km 9% 9% 7% 4% 7% 5% 5% 4%

Table VII. Prediction accuracy in terms of estimated distance from the unknown POI
location. KDE vs. OPT models.

Dataset
London New York Paris Beijing

Distance KDE OPT KDE OPT KDE OPT KDE OPT

0-2 km 9% 11% 16% 24% 10% 12% 23% 29%
2-4 km 31% 33% 41% 33% 31% 33% 27% 35%
4-6 km 33% 31% 24% 30% 36% 35% 33% 21%
6-8 km 18% 16% 13% 9% 17% 15% 11% 11%
> 8 km 9% 9% 6% 4% 6% 5% 6% 4%

5.2.3. Case Studies. To illustrate the impact of the number of observations on the
result quality, we visualize four concrete location estimation scenarios (one for each
dataset) by, in each case, progressively increasing the number of observations (spatial
relationships). Figure 13 illustrates the aforementioned scenarios. Figures 13(a), (b)
and (c) illustrate an unknown POI (red star) in the greater London area whose posi-
tion is described in relation to known POIs (black stars) using a total number of 15
spatial relations. Figure 13(a) shows the contours of the spatial probability distribu-
tion when only using randomly selected 50% of the observations, while Figure 13(b)
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Fig. 12. Estimation error in km - (a) mean and (b) median error.

shows the final distribution considering all spatial relations. Finally, Figure 13(c) is a
closeup of Figure 13(b) with a Google Maps basemap overlay. In a similar fashion, Fig-
ure 13 shows the results for New York, Beijing and Paris, with a total number of 20, 70
and 200 spatial relations being used in each case, respectively. These results demon-
strate the considerable prediction accuracy. Especially the estimates for Beijing (see
Figures 13(g),(h),(i)) and Paris (see Figures 13(j),(k),(l)) clearly pinpoint the unknown
POI location. What is further encouraging is that even for the cases of London (see
Figures 13(a),(b),(c)) and New York (see Figures 13(d),(e),(f)), for which the number of
relations is considerably smaller, the proposed approach works reasonably well.

As expected, the prediction accuracy increases with the number of observations con-
sidered. This is confirmed by the mass of the probability moving closer to the unknown
POI location when increasing the number of observations from a randomly selected
50% (Figure 13 1st column) to 100% (Figure 13 2nd column). This effect is observed for
all four cases. Table VIII shows the distances between the centers of the spatial prob-
ability distributions (OPT model result) and the actual POI locations as we increase
the percentage of spatial relations considered in our estimate.

Table VIII. Distance between the center of the spatial probability
distribution and the unknown POI.

Percentage of relations considered

Dataset 10% 50% 100%

London 15.3km 7.9km 7.7km
New York 16.2km 11.9km 11.1km
Beijing 14.4km 8.6km 1.2km
Paris 8.7km 1.6km 0.8km

The results show that as we increase the number of relations, we achieve more accu-
rate estimates. The improvement is considerable for all cases, with Beijing and Paris
benefiting most and achieving errors < 2km (indicated in bold in Table VIII). More-
over, although the estimation quality (accuracy as well as precision) increases with
the number of observations, nevertheless, even in the case of a small number of avail-
able observations, we can rely on the crowd as a data source for location estimation.

Overall, we can conclude that the proposed OPT modeling using GMMs optimized
by the greedy EM algorithm presented in Section 3.2 can efficiently handle the un-
certainty introduced by user-contributed qualitative geospatial data. In combination
with information extraction techniques and with our location estimation algorithm
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Fig. 13. Real world location estimation scenarios - Rows 1 to 4 are scenarios for London, New York, Beijing,
and Paris - Columns 1-3 shows results for 50% , 100% and 100% (closeup on Google Maps) of the observations
(discovered relations) considered in the estimation.

presented in Section 4.2, it provides us with the non-trivial means of textual narrative-
based location estimation.
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6. RELATED WORK

Work relevant to this paper includes: (i) location estimation of multimedia data and
social network (mostly Twitter) users and (ii) location estimation of unknown points
of interest based on spatial relations from textual data.

6.1. Location Estimation of Multimedia Data and Social Network Users

[Friedland et al. 2010] is one of the first attempts for multimodal location estimation
on videos where visual, acoustic and textual information is combined in order to de-
clare where a video was recorded. Furthermore, [Choi et al. 2013] extends this work
where the authors study human performance as baseline for location estimation for
three different combinations of modalities (audio only, audio + video, audio + video +
textual metadata) and compares it with the automatic method’s performance in [Fried-
land et al. 2010]; the study demonstrates cases when humans could effectively iden-
tify audio cue for estimating video’s location when the automatic method failed. [Kelm
et al. 2013] combines the data from the visual and textual modalities with external
geographical knowledge bases by building a hierarchical model that combines data-
driven and semantic methods to group visual and textual features together within
geographical regions. As a result, the proposed method successfully located 40% of the
videos in the MediaEval 2010 Placing Task test set within a radius of 100m.

From a different perspective, the authors in [Cheng et al. 2010] consider geolocation
prediction from Twitter data. In particular, the authors propose a probability frame-
work to estimate city-level location of a Twitter user based on tweet content. According
to their results, about half of the Twitter users can be placed within 100 miles of their
true locations. Following this line of work, the authors in [Chang et al. 2012] propose
to model the spatial usage of a word as a Gaussian mixture model; an approach that
is also followed in our work. Content-based machine learning techniques for Twitter
user localization are presented in [Jaiswal et al. 2013], while the authors in [Han et al.
2012] and [Han et al. 2014] study the location estimation problem which is based on
the automatic identification of location indicative words: that is words that implicitly
or explicitly encode an association with a particular location.

[Backstrom et al. 2010] have similarly found spatial scaling among on-line inter-
actions: they show how this association appears so strong and important that it can
be safely exploited to infer where Facebook users are only from the location of their
friends.

[McGee et al. 2013] extend the method [Backstrom et al. 2010], citing the difficul-
ties of adapting from Facebook to Twitter: (1) user-provided data is significantly less
precise in Twitter, (2) the geographic scale of the study moves from only within the
United States to a global scope, and (3) social relationships in Twitter serve multiple
roles, beyond signifying friendships. As such, [McGee et al. 2013] seek to classify a
user’s Twitter relationships according to the probability that they serve as strong pre-
dictors of that user’s location. For ground truth, users with at least three GPS posts are
selected and the median latitude and longitude values are selected as their location.
The naı̈ve method, discussed in our work is similar to this approach. In the experimen-
tal section of our work we showed that the proposed modeling and grid-based location
estimation algorithm outperforms mean location solutions.

[Kong et al. 2014] propose several extensions to the [Backstrom et al. 2010] model
based on strategies for weighting which of a user’s friends are likely to be most pre-
dictive of their location. Given a user, their friends are weighted according to a so-
cial tightness coefficient, which is computed as the cosine similarity of the two user’s
friends.
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Finally, some topic models that take into account geographical lexical variation have
been recently proposed in [Eisenstein et al. 2010] and [Hong et al. 2012]. These are
very interesting approaches which connect words within high-level topics with specific
geographic regions.

We highlight that, while the above approaches study a similar problem to ours, they
do not handle scenarios where the observations contain POIs with positions not stored
in a geographical database (they assume that all extracted POIs are known). In stark
contrast, our approach can further improve upon the papers above by providing prob-
abilistic location estimates for POIs observed for the first time.

6.2. Location Estimation of Unknown Points of Interest

After the present paper was written, we became aware of independent recent works
on location estimation of points of interest that are not stored in any geographical
database. Specifically, the authors in [Moncla et al. 2014a] and [Moncla et al. 2014b]
propose an unsupervised geocoding algorithm which employs clustering techniques in
order to estimate a spatial footprint of toponyms not found in gazetteers. The authors
evaluate their approach with a corpus of real hiking descriptions in three different
languages. Yet, there is an important difference with our setting: the authors assume
that there is no uncertainty included in human descriptions, a rather strong assump-
tion for real applications. In particular, they consider the hiking descriptions as a-
priori 100% correct and they provide a heuristic solution based on predefined patterns
and categories of spatial relationships. We believe that our approach, i.e., probabilis-
tic modeling of spatial relationships combined with our grid-based location estimation
algorithm, is an important complementary feature in such scenarios that takes the
uncertainty contained in user generated texts into account and further improves other
proposed approaches for location prediction of unknown POIs.

7. CONCLUSIONS
The increase in available user-generated data provides us with a unique opportunity
to generate rich geospatial datasets. With textual narrative being the most popular
form of human expression on the Internet, this work provides a method that effec-
tively translates text into geospatial datasets. Our specific contribution is detecting
spatial relationships in textual narratives and using them to estimate the position
of unknown object locations. This is also a first step towards solving the geocoding
problem for “colloquial” locations generated by user-generated content. We introduce
specific preprocessing techniques for extracting spatial relations from textual narra-
tives and use a novel quantitative approach based on training probabilistic models
for the representation of spatial relations. Combining these models and interpreting
them as observations allows us to reason about unknown object locations. The pro-
posed approach provides an optimized spatial relation modeling technique combined
with a grid-based location estimation algorithm that achieves high-quality location
estimation results as evidenced by a range of real-world datasets. Here, our proba-
bilistic approach is robust with respect to handling the uncertainties that characterize
geospatial observations derived from crowd-sourced textual data. The results show
that colloquial location estimation facilitated by crowdsourced geospatial narratives is
a feasible approach.

Directions for future work include the optimization of the NLP techniques used for
the automatic extraction of POIs and spatial relationship information from texts. Fur-
thermore, we will investigate the implementation of global prediction models, which
could complement geocoding methods in our increasingly non-cartesian world. Also,
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this will enable us to evaluate additional probabilistic and deterministic modeling
techniques and to develop more efficient text-to-map applications.
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