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The Boolean SATisfiability problem (SAT) is of central importance in computer science. 
Although SAT is known to be NP-complete, progress on the engineering side—especially 
that of Conflict-Driven Clause Learning (CDCL) and Local Search SAT solvers—has been 
remarkable. Yet, while SAT solvers, aimed at solving industrial-scale benchmarks in 
Conjunctive Normal Form (CNF), have become quite mature, SAT solvers that are effective 
on other types of constraints (e.g., cardinality constraints and XORs) are less well-studied; 
a general approach to handling non-CNF constraints is still lacking.
To address the issue above, we design FourierSAT,1 an incomplete SAT solver based 
on Fourier Analysis (also known as Walsh-Fourier Transform) of Boolean functions, a 
technique to represent Boolean functions by multilinear polynomials. By such a reduction 
to continuous optimization, we propose an algebraic framework for solving systems 
consisting of different types of constraints. The idea is to leverage gradient information to 
guide the search process in the direction of local improvements. We show this reduction 
enjoys interesting theoretical properties. Empirical results demonstrate that FourierSAT
can be a useful complement to other solvers on certain classes of benchmarks.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background

Constraint satisfaction problems (CSPs) are fundamental in mathematics, physics, and computer science. The Boolean 
SATisfiability problem (SAT) is a special class of CSPs, where each variable takes value from the binary set {True, False}. 
Solving SAT efficiently is of utmost significance in computer science, both from a theoretical and a practical perspective. 
Applications of SAT solving are in combinatorial optimization [1], software verification [2], probabilistic inference [3], math-
ematical conjecture proving [4] and so on.

As a special case of SAT, conjunctive normal forms (CNFs) are a conjunction (and-ing) of disjunctions (or-ing) of literals. 
Despite the NP-completeness of CNF-SAT, there has been a lot of progress on the engineering side of CNF-SAT solvers. 
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Mainstream SAT solvers can be classified into complete and incomplete ones: A complete SAT solver will return a solution 
if there exists one or prove unsatisfiability if no solution exists, while an incomplete algorithm is not guaranteed to find a 
satisfying assignment. Clearly, an incomplete algorithm cannot prove unsatisfiability.

Most modern complete SAT solvers are based on the Conflict-Driven Clause Learning (CDCL) algorithm introduced in 
GRASP [5], an evolution of the backtracking Davis-Putnam-Logemann-Loveland (DPLL) algorithm [6,7]. Examples of highly 
efficient complete SAT solvers include Chaff [8], MiniSat [9], PicoSAT [10], Lingeling [11], Glucose [12], and machine-learning-
enhanced MapleSAT [13]. Overall, CDCL-based SAT solvers constitute a huge success for SAT problems, and have been 
dominating in the research of SAT solving.

Local search techniques are mostly used in incomplete SAT solvers. The number of unsatisfied clauses is often regarded 
as the objective function. Local search algorithms mainly include greedy local search (GSAT) [14] and random walk GSAT 
(WSAT) [15]. During the main loop, GSAT repeatedly checks the current assignments neighbors and selects a new assignment 
to maximize the number of satisfied clauses. In contrast, WSAT randomly selects a variable in an unsatisfied clause and 
inverts its value [16]. On top of these basic algorithms, several efficient variants of GSAT and WSAT have been proposed, 
such as NSAT [17], Sparrow [18], Novelty+ [19], SAPS [20,21] and ProbSAT [22]. While practical local-search solvers could 
be slower than CDCL solvers, local search techniques are still useful for solving a certain class of benchmarks, such as 
hard random formulas and MaxSAT [14,23]. Local search algorithms can also have nice theoretical properties [24]. Though 
there exist projects regarding proving unsatisfiability by local search [25,26], they fail to scale as well as resolution-based 
complete solvers.

Non-CNF constraints are playing important roles in theoretical computer science and other engineering areas, e.g., XOR
constraints in cryptography [27] as well as cardinality constraints (CARD) and Not-All-Equal (NAE) constraints in discrete 
optimization [28,29]. The combination of different types of constraints enhances the practical expressive power of Boolean 
formulas; e.g., CARD-XOR is necessary and sufficient for maximum likelihood decoding (MLD) [30], one of the most crucial 
problems in coding theory. Nevertheless, compared to that of CNF-SAT solving, efficient SAT solvers that can handle non-CNF
constraints are less well studied.

One way to deal with non-CNF constraints is to encode them in CNF [31,32]. Different encodings, however, differ in 
size, the ability to detect inconsistencies by unit propagation (arc consistency) and solution density [33]. It is generally 
observed that the running time of SAT solvers relies heavily on the details of encodings. E.g., CDCL solvers benefit from 
arc-consistency [34], while local search solvers prefer short chains of variable dependencies [35]. Finding a best encoding 
for a solver usually requires considerable testing and comparison [36].

Another way is to extend the existing SAT solvers to adapt to non-CNF constraints. Work on this line includes Crypto-
minisat [37] for CNF-XOR, MiniCARD [38] for CNF-CARD, Pueblo [39] and RoundingSAT [40] for CNF-Pseudo Boolean and 
MonoSAT [41] for handling CNF-graph-property. Such specialized extensions, however, often require different techniques for 
different types of constraints. Meanwhile, general ideas for solving hybrid constraints uniformly are still lacking.

1.2. Contributions

The primary contribution of this work is the design of a novel algebraic framework as well as a versatile, robust incom-
plete SAT solver—FourierSAT—for solving hybrid Boolean constraints.

The main technique we used in our approach is that of Fourier Expansions (also known as Walsh Transform of Boolean 
functions [42]). By transforming Boolean functions into “nice” polynomials, many properties can be analyzed mathematically. 
Besides the success of the Fourier Expansions in theoretical computer science [43,44], recently, this technique has also found 
surprising uses in algorithm design [45,46]. We believe that more algorithmic applications of this technique are still waiting 
to be discovered.

The workflow of our method is illustrated in Fig. 1. First, each constraint of the hybrid Boolean formula f is transformed 
to a multilinear polynomial. Second, the objective function F is constructed by summing up all multilinear polynomials. 
Then the gradients of the objective function are computed. Afterwards, we relax the domain and apply continuous opti-
mization methods to get a local minimum of F . Finally, the local minimum is discretized and we verify if the Boolean 
assignment is a solution. If not, we restart from a random point and optimize F again.

To our best knowledge, this paper is the first algorithmic work to study Fourier Expansions of Boolean functions as 
polynomials in the real domain instead of only Boolean domain. After lifting the domain, we find Fourier Expansions to 
be well-behaved. Thus, we manage to reduce satisfiability of Boolean constraints to continuous optimization and apply 
gradient-based methods. One of the attractive properties of our method is, that different types of constraints are handled 
uniformly—we no longer design specific methods for each type of constraints. Moreover, as long as the Fourier Expansions 
of a new type of constraints are evaluable, our solver can be extended to adapt the new constraints trivially. In addition, we 
explain the intuition of why doing continuous optimization for SAT is better than doing discrete local search.

Furthermore, our study on the local landscape of Fourier Expansions reveals that the existence of saddle points is an ob-
stacle for us to design algorithms with theoretical guarantees. Previous research shows that gradient-based algorithms are in 
particular susceptible to saddle point problems [47]. Although the study in [48,49] indicates that stochastic gradient descent 
with random noise is enough to escape saddle points, strict saddle property, which is not valid in our case, is assumed 
in the work above. Therefore, we design specialized algorithms for optimizing Fourier Expansions. Finally, we demonstrate, 
by experimental results, that for certain classes of hybrid formulas and MaxSAT instances, FourierSAT shows promising 
2
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Fig. 1. Workflow of FourierSAT. First, each constraint of the hybrid Boolean formula f is transformed to a multilinear polynomial. Second, the objective 
function is constructed by summing all multilinear polynomials up. Then, the gradients of the objective function are computed. Afterwards, we relax the 
domain and apply continuous optimization methods to get a local minimum of F . Finally, the local minimum is discretized and we verify if the Boolean 
assignment is a solution. If not, we start from a random point and optimize F again.

potential to be a reliable solver. We believe that the natural reduction from SAT to continuous optimization, combined with 
state-of-the-art constrained-continuous optimization techniques, opens a new line of research on SAT solving. This paper, 
based on a Master’s thesis [50], extends our AAAI 2020 conference paper [51] by providing the following novel contributions.

• An extension on the applicable types of constraints from {disjunctive clauses (CNF clauses), XOR, cardinality constraints 
(CARD), Not-All-Equal (NAE)} to all symmetric constraints.

• Self-contained, detailed proofs of all theoretical results.
• Algorithms for using second-order information to escape local optima.
• Extensive new experimental results (on MaxSAT instances), illustrations, examples, remarks, and related work.
• A historical note for Walsh-Hadamard-Fourier Transform.

1.3. Related work

Our work falls into the area of applying algebraic approaches for solving discrete logical reasoning problems, including 
SAT solving and Boolean refutation. As an attempt in this area, Discrete Lagrange Method (DLM) [52] considers the KKT 
condition in discrete setting and searches in the primal-dual space. DLM is, however, essentially equivalent to discrete local 
search algorithms with dynamic weight updating [53].

Our approach shares a similar core spirit with ZAP [54], in the sense of creating a uniform framework for handling 
various Boolean constraints. ZAP exploits the symmetry of clauses and represents Boolean instances compactly by group 
elements while we use polynomials.

Since our framework is based on polynomial-optimization, to our best knowledge, it finds connections with the following 
work in this more specific area. An important line of work in this field is to use a theoretically powerful proof system, 
Gröbner basis [55–57] for proving unsatisfiability. Besides giving refutations of satisfiability, Gröbner basis is also used 
for pre-processing the CNF formula to provide a good initial point [58]. As for other directions, the authors of [59] used 
“balanced polynomial”, a polynomial representation similar to Fourier Expansion, to design an efficient algorithm for solving 
parity learning problem. The main framework of their solver, however, is still DPLL-based and the mathematical properties 
of polynomials are not sufficiently leveraged. Another direction that has been followed previously is the transformation 
between CNF and ANF [60,61]. While ANFs are polynomials in field Fn

2 , our polynomials are in Rn . An alternative high-
order polynomial representation of the objective function used in local search is proposed in [62]. Though those polynomials 
are also defined on Rn , our multilinear Fourier representation enjoys more desirable theoretical properties, which we will 
elaborate at the end of Subsection 3.5. Moreover, optimizing a multilinear polynomial plays an important role in submodular 
optimization [63]. Nevertheless, in this work we do not assume submodularity and derive theoretical results independently.

1.4. Paper organization

Section 2 presents preliminaries about hybrid Boolean formula and Walsh-Fourier Transform of Boolean functions. 
Section 3 proposes a reduction from Boolean satisfiability to constrained continuous minimization and lists theoretical 
properties of this reduction. Section 4 proposes a group of specialized algorithms for minimizing our objective function. 
Furthermore, properties of those algorithms are presented and proved. Section 5 demonstrates the ability of our method 
on solving hybrid Boolean formula and MaxSAT instances by experimental results. Finally, Section 6 summarizes the main 
contributions of this paper and describes several future directions.
3
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Table 1
Notations and their descriptions.

Notation Description

a, y, z A point in [−1,1]n

{a(i)} A sequence of points in optimization
a� The convergent point in optimization
ai The i-th coordinate of a
aS The projected point of a on set S
b A Boolean assignment in {−1,1}n

c A Boolean constraint
d The difference of sp
C f The set of constraints of f
E The expectation
∅ The empty set
f A Boolean function
f |xi←1 The Boolean function obtained by fixing xi to 1 in f
f̂ (S) Fourier coefficient of f at set S
F A multilinear polynomial
F |xi←1 The multilinear polynomial obtained by fixing xi to 1 in F
F f The multilinear objective function corresponding to f
FEc Fourier Expansion of constraint c
G The projected Gradient
H A matrix
g,h A general function
I, J , S A set of indices, i.e., a subset of [n]
Sa The probability space induced by rounding function R and point a
sp The spectrum of symmetric Boolean function
Tρ The noise operator on Boolean functions
n The number of Boolean variables in a formula
m The number of Boolean constraints of a formula
mSAT The number of satisfied Boolean constraints of a formula
[n] The set {1,2, · · · ,n}
v A direction in Rn

P The probability
R The real domain
R The randomized rounding function
t The iteration number
U Uniform distribution
w f The constraint weight function of formula f
x The set of Boolean variables {x1, x2, · · · , xn}
xS The set of Boolean variables {xi |i ∈ S}
α,β,γ A real number
� A (convex) set
η The step size in gradient descent
ε The accuracy in gradient descent
∇ F First-order derivative of F
∇i F First-order derivative of F at xi , a.k.a., ∂ F

∂xi
or (∇ F )i

∇v F Directional derivative of F in direction v
∇2 F Second-order derivative of F
∇2

v F Second directional derivative of F in direction v
# The number of
#neg(b) The number of negative elements in vector b
∧ The logical AND
∨ The logical OR
⊕ The logical XOR

1.5. Notations

For the readers’ convenience, we list all notations used in this paper and their descriptions in Table 1, though those 
notations will still be introduced at their first appearance.

2. Boolean formulas and Walsh-Hadamard-Fourier transform

In this section we introduce basic concepts, notations and background. We also give a historical note for Walsh-
Hadamard-Fourier Transform.
4
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Table 2
Examples of Fourier Expansion on different constraints.

Constraint ( f ) Fourier Expansion (FE f )

x1 ∨ x2 − 1
2 + 1

2 x1 + 1
2 x2 + 1

2 x1x2

CARD≥2(x1, x2, x3) 1
2 x1 + 1

2 x2 + 1
2 x3 − 1

2 x1x2x3

x1 ⊕ x2 ⊕ x3 x1x2x3

NAE(x1, x2, x3) − 1
2 + 1

2 x1x2 + 1
2 x2x3 + 1

2 x1x3

2.1. Boolean formulas and constraints

Let x = (x1, ..., xn) be a sequence of n Boolean variables. A Boolean function f (x) is a mapping from a Boolean vector 
{True,False}n to {True, False}. A vector b ∈ {True, False}n is called an assignment and f (b) denotes the value of f
on b. A literal is either a variable xi or its negation ¬xi . In this paper, we assume f = c1 ∧ c2 ∧ · · · ∧ cm is the conjunction 
of m constraints. In the following we list four useful types of constraints:

• Disjunctive Clauses (their conjunction forms a CNF formula): A disjunctive clause is a disjunc-
tion of elements in a literal set, which is satisfied when at least one literal is true, e.g., (x1 ∨ x2 ∨ ¬x3).

• CARD: Given a set L of literals and an integer k ∈ [n], a cardinality constraint CARD≥k(L) (resp. CARD≤k(L)) requires 
the number of literals assigned True to be at least (resp. most) k.

• XOR: An XOR constraint indicates the parity of the number of literals assigned True, which can be computed by 
addition in F2, e.g., x1 ⊕ x2 ⊕ x3.

• NAE: A Not-All-Equal (NAE) constraint is satisfied when not all the variables have the same value.2 E.g., NAE(True,

True, True, True, False) = True; NAE(False, False, False, False, False) = False.

Let the set of constraints of f be C f , m = |C f | and n be the number of variables of f . A solution of f is an assignment that 
satisfies all the constraints in C f . We aim to design a framework to find a solution of f .

2.2. Fourier expansion of a Boolean function

From now on, we define a Boolean function by f : {±1}n → {±1}. One point which might be counter-intuitive is that −1
is used to stand for True and +1 for False. An assignment now is a vector b ∈ {±1}n .

Walsh(-Hadamard-Fourier) Transform is a method for transforming a Boolean function into a multilinear polynomial. The 
polynomial after transformation is often referred as the Fourier Expansion. The following theorem shows that any function 
defined on a Boolean hyper-cube has an equivalent Fourier Expansion.

Theorem 1. (Walsh (-Hadamard-Fourier) Transform) Given a function f : {±1}n → R, there is a unique way of expressing f as a 
multilinear polynomial, denoted by FE f , which agrees with f on all points in {±1}n. The polynomial has at most 2n terms and each 
term corresponds to one subset of [n], according to:

FE f (x) =
∑

S⊆[n]

(
f̂ (S) ·

∏
i∈S

xi

)
,

where each ̂ f (S) ∈R is called the Fourier coefficient of f at S, and is computed as:

f̂ (S) = E
b∼U[{±1}n]

[
f (b) ·

∏
i∈S

bi

]
= 1

2n

∑
b∈{±1}n

(
f (b) ·

∏
i∈S

bi

)

where b ∼ U [{±1}n] indicates b is uniformly sampled from {±1}n. The polynomial FE f is referred as the Fourier Expansion of f .

Corollary 1. For a Boolean function f : {±1}n → R, the constant term of the polynomial FE f equals to the expectation of f under 
uniform distribution, i.e., ̂ f (∅) = E

b∼U [{±1}n]
[ f (b)].

Table 2 shows some examples of Fourier Expansions.

2 Note that an NAE constraint can be represented by two disjunctive clauses.
5
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2.3. Walsh(-Hadamard-Fourier) transform: history and applications

The history of Fourier Expansion dates back to 1923 when Walsh introduced a complete orthonormal basis for ±1
functions [64]. The values of Walsh function form a symmetric, involutive matrix H ∈ {−1, 1}2n×2n

, known as the Hadamard 
Matrix [65]. The list of Fourier coefficients s ∈R2n

can be computed by s = 1
2n H ·v from the function value list v ∈ {−1, 1}2n

. 
This linear transform is often called Walsh Transform or Walsh-Hadamard Transform and sometimes Fourier transform on 
Boolean functions.

The study of Walsh Transform splits into two directions: as a mathematical tool in theoretical computer science and as 
a practical transformation of vectors.

Towards theoretical direction, Walsh Transform provides a way of applying harmonic analysis on Boolean functions. In 
related literature, the transform is frequently referred as the “Fourier Transform”. The use of “Fourier–Walsh analysis” in 
the study of Boolean functions quickly became well known in the early 1960s. In 1970, Bonami obtained the first hyper-
contractivity result [66], which later became a crucial tool for analyzing Boolean functions. However, the use of Boolean 
analysis in theoretical computer science seemed to wane until 1988, when the outstanding work of Kahn, Kalai, and Linial 
[67] ushered in a new area of sophistication [42]. The Walsh Transform on Boolean functions has over the past two decades 
become one of the most important and versatile tools for solving problems in theoretical computer science, such as proving 
circuit complexity [68], the threshold of phase-transition of graph property [69] and the impossibility of designing a social 
welfare function that satisfies certain conditions (Arrow’s Theorem) [70]. Besides theory, there also exists some algorithmic 
work on applying Walsh-Fourier transform to solve more practical problems, such as finding new hashing functions for 
model counting [71] and approximating the partition function [46].

On the practical side, the transform is more often referred as the “Walsh-Hadamard Transform” instead of “Fourier 
Transform”. As one of the most popular spectral transformations, Walsh Transform finds applications in Boolean func-
tion classification [72], Boolean function matching [73] and circuit synthesis [74]. Since one of the shortcomings of Walsh 
Transform-based methods is the expensive computational cost, extensive work has been done on making the transform more 
efficient. Walsh Transform is equivalent to multi-dimensional Discrete Fourier Transform (DFT). Therefore, the existence of 
Fast Walsh Transform with complexity O (n2n), is not surprising. In addition, there are works that use some compact data 
structures, e.g., Binary Decision Diagram (BDD) [75] as the representation of Boolean functions to be transformed. Never-
theless, the worst-case complexity of the Walsh-Fourier Transform is still exponential, even with respect to the size of the 
data structures for representing Boolean functions [76,77].

3. A reduction from SAT to continuous optimization

In this section, we reduce finding a solution of a Boolean formula to reaching a minimum of a continuous multilinear 
polynomial. The core idea is to evaluate the objective function composed of Fourier Expansions on the real domain. Then 
the value of the objective function essentially indicates the expectation of the number of satisfied constraints. Evaluating 
the Fourier Expansions is, in general, computationally prohibitive. Thus we focus on the Boolean formulas consisting of only 
symmetric constraints, which already covers many interesting cases and design methods to evaluate the objective function. 
We then explore promising theoretical properties of the multilinear representation.

3.1. Computing Fourier expansions is #P-hard in general

Our basic idea is to apply continuous optimization on Fourier Expansions of Boolean functions. However, in general, 
computing the Fourier coefficients of a Boolean function is nontrivial and often harder than SAT itself (see Proposition 1). 
Even if we are able to get the Fourier Expansion of a Boolean formula, the polynomial can have high degree—and as a result, 
exponentially many terms—making it hard to evaluate.

Proposition 1. Computing the Fourier Expansion of a pseudo-Boolean constraint3 is #P-hard.

Proof. We reduce the counting of the number of solutions of a knapsack problem, a #P-hard problem, to the computation 
of the constant term of the Fourier Expansion of a pseudo-Boolean function.

For a knapsack problem with n items, weights of items {w1, w2, ..., wn} and capacity cap, we construct the pseudo-
Boolean constraint c: 

∑
i wi · 1−bi

2 ≤ cap, or rewritten as 
∑

i wibi ≥∑i wi − 2 ·cap where b ∈ {±1}n . Note that each 1−bi
2 ∈

{0, 1} indicates whether the i-th item is selected in the knapsack as the traditional Boolean variable. It is easy to verify that 
there is a bijection between solutions of c and the solutions of the corresponding knapsack problem. Let the corresponding 
Boolean function of c be fc ( fc = −1 if c is satisfied and fc = 1 if c is unsatisfied). Let SOLc = {b|b ∈ {±1}n, fc(b) = −1}
be the solution set of c. By Corollary 1, the constant term f̂ c(∅) = E

b∼U [{±1}n]
[ fc(b)] = (−1)·|SOLc |+1·(2n−|SOLc |)

2n , thus |SOLc| =

3 a generalization of a cardinality constraint, e.g., 3x1 + 2x2 + 7(x3) ≥ 0, x ∈ {±1}3.
6
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2n−1(1 − f̂ c(∅)). Therefore, there is a reduction from counting the solutions of a knapsack problem to computing Fourier 
coefficients (in this case, only the constant term) of a pseudo-Boolean function. �

Instead of computing Fourier coefficients of a Boolean function corresponding to a monolithic logical formula, we take 
advantage of factoring, constructing a polynomial from the Fourier Expansions of all constraints, as we will describe in the 
rest of this section.

3.2. Symmetric Boolean constraints have closed-form Fourier expansions

In this subsection we consider symmetric Boolean functions. Although the Fourier coefficients of symmetric Boolean 
functions on F2 has been studied by [78,79], to our best knowledge, we give the first explicit form of Fourier coefficients of 
symmetric Boolean functions defined on {−1, 1}n .

Definition 1. (Symmetric Boolean function) A Boolean function f is symmetric if f (x1, · · · , xn) ≡ f (xπ(1), · · · , xπ(n)) for 
every permutation π of [n]. Alternatively, symmetric Boolean functions can be regarded as functions whose value only 
depends on the number of coordinates assigned to be −1. Let the spectrum of a symmetric function f be sp ∈ {±1}n+1, 
where for 0 ≤ i ≤ n, spi is equal to the value of f where i variables are set to −1 and the other (n − i) variables are set 
to 1.

Example 1. The spectrum of NAE is spNAE = (1, −1, · · · , −1, 1). The spectrum of OR is spOR = (1, −1, · · · , −1).

In fact, a symmetric Boolean function is uniquely determined by the value of its spectrum. In the rest of this subsection 
we derive the closed-form expressions of Fourier Expansions for symmetric functions in terms of their spectra.

Theorem 2. Let f be a symmetric Boolean function and sp be its spectrum. Then for every S ∈ [n],

f̂ (S) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2n
·

n∑
i=0

(
n

i

)
· spi, |S| = 0

g(ρ)[ρ|S|−1]( n−1
|S|−1

)
2n−1

, |S| �= 0

where g(ρ)[ρ|S|−1] is the coefficient of ρ |S|−1 in the expansion of polynomial g(ρ) and g(ρ) =
n−1∑
i=0

di · (n−1
i

)
(1 + ρ)n−i−1(1 − ρ)i . 

d ∈ {−1, 0, 1}n is defined as di = 1
2 (spi − spi+1) for each 0 ≤ i ≤ n − 1.

Proof. This proof is a generalization of the proof of Theorem 5.19 in [42]. Skipping this technical proof will not undermine 
understanding the rest of the paper.

For the case |S| = 0. By Corollary 1, the constant term f̂ (∅) equals to the expectation of the function:

f̂ (∅) = E
b∼U[{±1}n]

[ f (b)]

= 1
2n

(
#

b∈{±1}n
f (b) = −1

)
· (−1) + 1

2n

(
#

b∈{±1}n
f (b) = 1

)
· 1

=

n∑
i=0

(
n

i

)
· spi

2n

For the case of |S| �= 0, we need to use more advanced arguments.
For a Boolean point b ∈ {−1, 1}n and ρ ∈ [0, 1], we use y ∼ Nρ(b) to denote the following distorted probability distri-

bution of y ∈ {−1, 1}n: for each i ∈ [n], yi takes value bi with prob. ( 1
2 + ρ

2 ) and −bi with prob. ( 1
2 − ρ

2 ). Based on this 
distribution, for a Boolean function f and a Boolean point b, let Tρ( f , b) = E

y∼Nρ(b)
[ f (y)] and Tρ is often called the noise 

operator with respect to ρ .
There are different ways of computing Tρ , which leads to the derivation of the Fourier coefficients of symmetric func-

tions.
Method 1 of computing Tρ .
The derivative of f at variable xn , denoted by ∇n f : {−1, 1}n−1 → {−1, 0, 1}, can be computed by

∇n f (x) = 1
( f (x1, x2, · · · , xn = 1) − f (x1, x2, · · · , xn = −1)).
2

7
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For a vector b ∈ {−1, 1}n , let the number of −1s in b be denoted by #neg(b). Given that f is symmetric, it can be verified 
that

∇n f (b) = d#neg (b[n−1]),

i.e., ∇n f (b) equals the element of d with index #neg(b[n−1]).
By the probabilistic definition of Tρ (See Definition 2.46 in [42] for more details), we have

Tρ(∇n f , (1,1, ...,1))

= E
y∼Nρ(1,1,...,1)

[∇n f (y)]

= E
y∼Nρ(1,1,...,1)

[d#neg (y[n−1])|]

=
n−1∑
i=0

di · P
y∼Nρ(1,1,...,1)

[d#neg (y[n−1]) = i]

=
n−1∑
i=0

di ·
(

n − 1

i

)
(

1

2
+ ρ

2
)n−i−1(

1

2
− ρ

2
)i .

Method 2 of computing Tρ .
Consider ∇n f (x), the derivative of f at xn . Since f is symmetric, we have

f̂ (S) = ∇̂n f (T )

for any T ⊆ [n − 1] with |T | = |S| − 1. This can be seen by observing that a term in ∇n f with |T | variables comes from a 
term with |T | + 1 variables in f before differentiating on xn .

By the Fourier Expansion representation of Tρ (see Proposition 2.47 in [42]) and the fact that ∇n f is symmetric, we 
have

Tρ(∇n f , (1,1, ...,1)) =
∑

U⊆[n−1]
∇̂n f (U )ρ|U | =

n−1∑
i=0

(
n − 1

i

)
∇̂n f ([i])ρ i

The equation for computing Fourier coefficients can be obtained by equating coefficients of ρ in two representations of 
Tρ(∇n f )(1, 1, ..., 1) computed by Method 1 and Method 2. �
Remark 1. For symmetric functions, f̂ (S) can also be written more succinctly by Kravchuk polynomials Kk(i; n, q) =∑k

j=0(−1) j(q − 1)k− j
( i

j

)(n−i
k− j

)
.

f̂ (S) =

⎧⎪⎪⎨⎪⎪⎩
1

2n ·
n∑

i=0

(n
i

) · spi, |S| = 0

1
( n−1
|S|−1)2n−1

·
n−1∑
i=0

di ·K|S|(i,n − 1,2), |S| �= 0

Above we show how to obtain the closed-form expression of Fourier coefficients of symmetric functions with all positive 
literals. In the following we will see that allowing negative literals does no harm. The key observations is that the Fourier 
Expansion of ¬ f is simply −FE f . Let li be a literal (xi or ¬xi ). Let sgn(li) = 1 if li = xi and sgn(li) = −1 if li = ¬xi . For a 
Boolean constraint c, suppose every variable appears at most once in c. Then c can be written as a functions of literals, i.e., 
c(l1, l2, · · · , ln). Let f p be the “positive version” of f , obtained by flipping all negative literals in f to positive. If we know 
f̂ p(S), i.e., the Fourier coefficient of f̂ p on S , then it is not hard to verify that f̂ (S) = f̂ p(S) · ∏

i∈S
sgn(li).

Example 2. (Negative literals) The Fourier Expansion of (x1 ∨ x2 ∨ x3) is − 3
4 + 1

4 (x1 + x2 + x3 + x1x2 + x2x3 + x1x3 + x1x2x3). 
Thus the Fourier Expansion of (x1 ∨ ¬x2 ∨ ¬x3) is − 3

4 + 1
4 (x1 + (−1) · x2 + (−1) · x3 + x1 · (−1) · x2 + (−1) · x2 · (−1) · x3 +

x1 · (−1) · x3 + x1 · (−1) · x2 · (−1) · x3).

In Remark 2, we give closed-form expressions of Fourier coefficients of some types of constraints (in “positive” version) 
which are special cases of symmetric Boolean functions.
8
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Remark 2. We give the closed-form representation of Fourier coefficients of the following classes of constraints. Without 
loss of generality, we assume all literals are positive. In order to demonstrate how Theorem 2 actually works, we show the 
detailed steps for deriving the Fourier coefficients of OR constraints.

• Cardinality constraints (CARD≥k)/disjunctive clauses (OR).

̂CARD≥k(S) =

⎧⎪⎨⎪⎩
1 −

∑n
i=k (

n
i)

2n−1 , |S| = 0
(n−1

k−1)
(
(1+ρ)n−k(1−ρ)k−1)

[ρ|S|−1]
( n−1
|S|−1)2n−1

, |S| �= 0

In particular, a disjunctive clause is CARD≥1, a.k.a., OR.

ÔR(S) =
{

1
2n−1 − 1, |S| = 0

1
2n−1 , |S| �= 0

Proof. The spectrum of OR is spOR = (1, −1, · · · , −1).
By Theorem 2,

ÔR(∅) = 1

2n
·

n∑
i=0

(
n

i

)
· (spOR)i

= 1

2n

(
1 −

n∑
i=1

(
n

i

))
= 1

2n−1 − 1

Next we assume S �= ∅. By the definition in Theorem 2,

dOR = 1

2
· (1 − (−1), (−1) − (−1), · · · , (−1) − (−1)) = (1,0,0, · · · ,0)

According to Theorem 2,

g(ρ) =
n−1∑
i=0

(dOR)i ·
(

n − 1

i

)
(1 + ρ)n−i−1(1 − ρ)i

=
(

n − 1

0

)
(1 + ρ)n−0−1(1 − ρ)0 = (1 + ρ)n−1

Therefore by Theorem 2, for S �= ∅ we have

ÔR(S) = g(ρ)[ρ|S|−1]( n−1
|S|−1

)
2n−1

=
( n−1
|S|−1

)( n−1
|S|−1

)
2n−1

= 1

2n−1 . �

• Not-All-Equal (NAE).

N̂AE(S) =

⎧⎪⎨⎪⎩
0, |S| is odd

( 1
2 )n−2 − 1, |S| = 0

( 1
2 )n−2, |S| is even and non-zero

• Exact-One (EO).

ÊO(S) =

⎧⎪⎨⎪⎩
1 − n

2n−1 , |S| = 0
( n−1
|S|−1)−(n−1)

[
( n−2
|S|−1)−( n−2

|S|−2)
]

( n−1
|S|−1)2n−1

, |S| �= 0

• XOR on variable set X .

X̂OR(S) =
{

1, S = X

0, S �= X
9
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Example 3. In this example we will compute all Fourier coefficients of the cardinality constraint c = CARD≥2(x1, x2, x3) in 
Table 2 by Remark 2. Note that c can be regarded as an odd function, i.e., c(x) = −c(−x). Thus all coefficients with even 
degree will be zero.

ĉ(∅) = 1 −
∑3

i=2

(3
i

)
23−1

= 1 − 3 + 1

4
= 0

ĉ({x1}) = ĉ({x2}) = ĉ({x3}) =
(3−1

2−1

)(
(1 + ρ)3−2(1 − ρ)2−1

)
[ρ1−1](3−1

1−1

)
23−1

= 2

4
= 1

2

ĉ({x1, x2}) = ĉ({x2, x3}) = ĉ({x1, x3}) =
(3−1

2−1

)(
(1 + ρ)3−2(1 − ρ)2−1

)
[ρ2−1](3−1

2−1

)
23−1

=
2 · (1 − ρ2

)
[ρ]

2 · 22
= 0

ĉ({x1, x2, x3}) =
(3−1

2−1

)(
(1 + ρ)3−2(1 − ρ)2−1

)
[ρ3−1](3−1

3−1

)
23−1

=
2 · (1 − ρ2

)
[ρ2]

1 · 22
= −1

2

Thus FEc = 1
2 x1 + 1

2 x2 + 1
2 x3 − 1

2 x1x2x3.

3.3. A reduction from SAT to optimization

Definition 2. (Objective function) For a formula f with constraint set C f , we define the objective function associated with f , 
denoted by F f , by the sum of Fourier Expansions of f ’s constraints, i.e.,

F f =
∑
c∈C f

FEc

where FEc is the Fourier Expansion of constraint c.

The degree (maximum number of variables in all terms) of F f equals to the maximum number of literals among all 
constraints. Note that, in general, F f is not the Fourier Expansion of f . Instead, it can be regarded as a surrogate of f ’s 
Fourier Expansion which is relatively easy to compute.

Let us provide an example to demonstrate the above ideas.

Example 4. Suppose f = (x1 ∨ x2) ∧ (x3 ⊕ x5) ∧ (x2 ∨ ¬x4). Then, C f = {x1 ∨ x2, x3 ⊕ x5, x2 ∨ ¬x4} and

F f =
(

−1

2
+ 1

2
x1 + 1

2
x2 + 1

2
x1x2

)
+ x3x5 +

(
−1

2
+ 1

2
x2 − 1

2
x4 − 1

2
x2x4

)
= −1 + 1

2 x1 + x2 + x3x5 − 1
2 x4 + 1

2 x1x2 − 1
2 x2x4.

The objective function is a polynomial, and nothing prevents us from relaxing the domain from discrete to continuous. 
An assignment is now defined as a real vector in [−1, 1]n . The reduction is formalized in Theorem 3. ·

Theorem 3. (Reduction) f is satisfiable if and only if

min
a∈[−1,1]n

F f (a) = −m.

Recall that m is the number of constraints. Theorem 3 reduces SAT to a multivariate minimization problem over [−1, 1]n .

Example 5. Suppose f = (x1 ∨ ¬x2) ∧ (¬x1 ⊕ x2). Then

F f =
(

−1

2
+ 1

2
x1 − 1

2
x2 − 1

2
x1x2

)
− x1x2

= −1

2
+ 1

2
x1 − 1

2
x2 − 3

2
x1x2.

f has two solutions: x1 = True, x2 = True and x1 = False, x2 = False, which correspond to two global minima 
(−1, −1) and (1, 1) respectively of F f in [−1, 1]n with function value −2. The plots for F f and its gradient are shown 
in Fig. 2.
10
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Fig. 2. Value and Gradient of F f = − 1
2 + 1

2 x1 − 1
2 x2 − 3

2 x1x2 with f = (x1 ∨ ¬x2) ∧ (¬x1 ⊕ x2), the case in Example 5. Two global minima of F f are 
x1 = x2 = −1 and x1 = x2 = 1, corresponding to two solutions of f .

In the rest of this subsection, we will prove Theorem 3.

Definition 3. (Constant) A constraint is constant if it is equivalent to either True or False. The Fourier Expansion of a 
constraint is constant if it always equals to −1 or 1.

Definition 4. (Partially assigned function) Let J be a subset of {1, · · · , n}, a ∈ [−1, 1]| J | be a real vector and F : [−1, 1]n →R, 
we use F |x J ←a to denote the partially assigned function of F given by fixing the value of variables with indices in J to be 
the values in a.

Example 6. Let F = 1
2 + 1

2 x1 + 1
2 x2 − 1

2 x1x2, J = {1} and a = ( 1
2 ), then F |x J ←a = 1

2 + 1
2 · 1

2 + 1
2 x2 − 1

2 · 1
2 · x2 = 3

4 + 1
4 x2.

Definition 5. (Projection of vectors) For a real vector a ∈ [−1, 1]n and S ⊆ [n], we use aS to denote the projected vector of a
at coordinates in S . E.g., let a = (0.1, 0.2, 0.3) and S = {1, 3}, then aS = (0.1, 0.3).

The following fact can be regarded as the Fourier Expansion version of Boole’s Expansion Theorem. We will use this 
decomposition of multilinear polynomials several times in the proofs.

Fact 1. Let F be a multilinear polynomial. For all a ∈ [−1, 1]n , we have

F (a) = 1−an
2 · F |xn←(−1)(a[n−1]) + 1+an

2 · F |xn←1(a[n−1]).
Note that both F |xn←1 and F |xn←(−1) are independent with xn , the variable we split on.

Lemma 1 indicates the value of multilinear polynomials is well-behaved in the cube [−1, 1]n .

Lemma 1. Let c be a non-constant constraint and a be an assignment. Then:

1. if ai ∈ {−1, 1} for all i ∈ [n], then FEc(a) ∈ {−1, 1}.
2. if ai ∈ [−1, 1] for all i ∈ [n], then FEc(a) ∈ [−1, 1].
3. if ai ∈ (−1, 1) for all i ∈ [n], then FEc(a) ∈ (−1, 1).

Proof Sketch. The first argument is a direct result from the definition of the Fourier Expansion of Boolean functions. The 
proofs of 2. and 3. are based on induction on the number of variables and the decomposition technique in Fact 1.

Proof. Basis step: Let n = 1. Since FEc is non-constant and FEc(1), FEc(−1) ∈ {±1}, FEc(x) is either x1 or −x1. Then, 
the two last arguments of the lemma hold trivially.

Inductive step: Suppose n ≥ 2. Then, FEc(a) can be expanded as:

FEc(a) = 1−an · FEc|xn←(−1)(a[n−1]) + 1+an · FEc|xn←1(a[n−1])
2 2

11
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i) Suppose ai ∈ [−1, 1] for ∀i ∈ [n].
– If FEc |xn←(−1)(a[n−1]) · FEc|xn←1(a[n−1]) < 0. Then,

|FEc(a)| ≤max
{

1−an
2 · ∣∣FEc|xn←(−1)(a[n−1])

∣∣ , 1+an
2 · ∣∣FEc|xn←1(a[n−1])

∣∣ }≤ 1

– If FEc |xn←(−1)(a[n−1]) · FEc|xn←1(a[n−1]) ≥ 0, then we have

|FEc(a)| ≤
(

1−an
2 + 1+an

2

)
·max

{ ∣∣FEc|xn←(−1)(a[n−1])
∣∣ , ∣∣FEc|xn←1(a[n−1])

∣∣ }≤ 1

Note that the last steps in the two cases follow by inductive hypothesis.
ii) Suppose ai ∈ (−1, 1) for ∀i ∈ [n].

– If FEc |xn←(−1)(a[n−1]) · FEc|xn←1(a[n−1]) < 0, then, since | 1+an
2 | < 1, | 1−an

2 | < 1, we have by inductive hypothesis that,

|FEc(a)| ≤max
{

1−an
2 · ∣∣FEc|xn←(−1)(a[n−1])

∣∣ , 1−an
2 · ∣∣FEc|xn←1(a[n−1])

∣∣ }< 1.

– If FEc|xn←(−1)(a[n−1]) · FEc|xn←1(a[n−1]) ≥ 0, since we already have proved that |FEc(a)| ≤ 1, what we need to show 
is |FEc(a)| �= 1. Note that for |FEc(a)| = 1 to be true, both |FEc |xn←(−1)(a[n−1])| = 1 and |FEc |xn←1(a[n−1])| = 1 must 
hold. By inductive hypothesis, if one of FEc |xn←(−1)(a[n−1]) and FEc |xn←1(a[n−1]) is non-constant, then

|FEc|xn←(−1)(a[n−1])| < 1 or |FEc|xn←1(a[n−1])| < 1.

Therefore both FEc |xn←(−1)(a[n−1]) and FEc |xn←1(a[n−1]) are constant and FEc only relies on one variable xn , which 
is covered by the basis. �

Most relaxing-based methods rely on specific rounding procedures to convert a real assignment to discrete. In this paper, 
we will show that our continuous method converges to a “discrete-like” point spontaneously. In order to prove this property, 
we first define the concept “feasibility”.

Definition 6. (Feasible assignments) For the objective function F f of a Boolean formula f and an assignment a ∈ [−1, 1]n , 
let I = {i | ai ∈ {±1}} be the index set of the discrete part of a. a is a feasible assignment of F f if F f |xI ←aI is constant, 
where aI is the projected vector of a at coordinates in I , defined in Definition 5. We say a is feasible if F f is clear in 
context.

Example 7. Let f = x1 ∧ x2; then

F f = 1
2 + 1

2 x1 + 1
2 x2 − 1

2 x1x2.

a = (1, −0.3) is a feasible assignment because I = {1} and F f |xI ←aI = F |x1←1 = 1
2 + 1

2 + 1
2 x2 − 1

2 x2 = 1 is constant not 
depending on x2. The intuition is, when we set x1 to be False, then x1 ∧ x2 is always False despite of the value of x2.

By Definition 6, if we find a feasible assignment a of the objective function, we can adjust it into a Boolean assignment 
b by rounding values of a in (−1, 1) to {±1} arbitrarily. By the feasibility of a, we have F f (a) = F f (b).

Lemma 1 indicates that for a constraint c, the value of FEc(a) ≥ −1 for all a ∈ [−1, 1]n . Suppose we find a fractional 
point a such that FEc(a) = −1. Can we extract a Boolean solution of c from a? Lemma 2 gives us the affirmative answer.

Lemma 2. Let c be a non-constant constraint and a ∈ [−1, 1]n be an assignment. If FEc(a) = −1, then a is a feasible assignment of 
FEc .

Proof. Suppose FEc(a) = −1. We partition [n] into two sets, I and [n] − I , where I = {i | ai ∈ {±1}} and [n] − I = {i | ai ∈
(−1, 1)}.

Consider the polynomial FEc|xI ←aI .

– If FEc|xI ←aI is constant, then a is feasible by definition.
– Otherwise, FEc|xI ←aI is non-constant. Thus [n] − I �= ∅. Since every variable with index in I is fixed in {±1}, FEc|xI ←aI

is the Fourier Expansion of a Boolean function on variables with indices in [n] − I . Since ai ∈ (−1, 1) for every i ∈ [n] − I , 
by the third argument of Lemma 1 we have

FEc(a) = FEc|xI ←aI (a[n]−I ) ∈ (−1,1),

which conflicts with the fact that FEc(a) = −1. Thus [n] − I = ∅ and a is feasible by definition. �
Now we are ready to prove Theorem 3, which gives the reduction from SAT to continuous optimization.
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Proof Sketch. The statement of Theorem 3 might look straightforward and natural, given that there is a one-to-one corre-
spondence between models of f and b ∈ {±1}n such that F f (b) = −m. However, since the statement includes minimization 
in the real domain, there are still several points that need to be taken care of. For the “⇒” direction, when f is satisfiable, 
we need to guarantee that there is no inner point of the box [−1, 1]n that has an objective value even smaller than −m
(Lemma 1). For the “⇐” direction, if there is a real point a ∈ [−1, 1]n such that F f (a) = −m, then we must guarantee that 
a binary assignment can be generated form a with the same objective value.

Proof of Theorem 3. Note that by the second argument in Lemma 1, we have F f (a) ≥ −m for all a ∈ [−1, 1]n .

– “⇒”: Suppose f is satisfiable and b ∈ {±1}n is one of its solutions. Then b is also a solution of every constraint of f . 
Thus for every c ∈ C f , FEc(b) = −1. Therefore F f (b) = −m and min

a∈[−1,1]n
F f (a) = −m.

– “⇐”: Suppose min
a∈[−1,1]n

F f (a) = −m. Thus there exists a ∈ [−1, 1]n such that F f (a) = −m. By the second argument in 

Lemma 1, we have FEc(a) = −1 for every c ∈ C f . By Lemma 2, a is a feasible assignment of FEc for every c ∈ C f . Thus 
a is also a feasible assignment of F f . Therefore, by feasibility, we can get a Boolean assignment which satisfies all the 
constraints by arbitrarily rounding all the fractional coordinates of a. �

3.4. Where will we converge to? Local landscape of multilinear polynomials

So far we have proved that we can obtain a solution to the original SAT problem if we find the global optimum of the 
objective function F f in [−1, 1]n . However, our method has not provided any guarantees regarding the solution quality of 
local minima, which are more often the destinations of convergence. In this subsection we characterize the local landscape 
of multilinear polynomials. Our main result is that local minima are meaningful and useful.

First, we formally define local minima in constrained problems.

Definition 7. (l2-norm) For a vector a ∈Rn , the l2-norm of a, denoted by ‖a‖, is defined by ‖a‖ =
√∑n

i=1 a2
i .

Definition 8. (Local minimum for constrained problem) For a vector a ∈ Rn , we define Nδ(a), the neighborhood of a with 
radius δ as Nδ(a) = {y | ‖a − y‖2 ≤ δ}. Given a set �, we say an assignment a is a local minimum of a polynomial F in �
if

∃δ > 0, ∀a′ ∈ Nδ(a) ∩ �, F (a) ≤ F (a′).
A local maximum is defined similarly. A point is called a local optimum if it is a local minimum or a local maximum.

Definition 9. (Critical points and saddle points) A critical point of a function F is a point at which all the first derivatives 
are zero. A saddle point is a critical point which is not a local optimum.

Fig. 3 illustrates some examples of saddle points.
In Theorem 4, we show that in the unconstrained setting, multilinear polynomials do not have local optima and all 

critical points are saddle points.

Theorem 4. In the unconstrained setting, every critical point of a non-constant multilinear polynomial is a saddle point.

Instead of directly proving Theorem 4, we prove a stronger result in Lemma 3. Roughly speaking, for each point of a 
multilinear polynomial, there is always a local increasing direction and a local decreasing direction.

Remark 3. Theorem 4 can be proved directly if one leverages the fact that multilinear polynomials are harmonic functions 
and applies the Maximum Principle [80]. However, the proof of the Maximum Principle is non-constructive. In this article, 
we provide a self-contained constructive proof by proving Lemma 3, which is of algorithmic interest as shown later in 
Algorithm 3.

Lemma 3. For every non-constant multilinear polynomial F and point a ∈ Rn, there exist a region size ε > 0 and two directions 
v+, v− ∈Rn, such that for all δ s.t. 0 < δ < ε, the following holds:

F (a + δv+) > F (a) and F (a + δv−) < F (a).

Example 8. In the example from Fig. 2, x1 = − 1
3 , x2 = 1

3 is a critical point but not a local optimum (thus a saddle point). 
There exist directions v+ = ±(1, −1) towards which F f can be increased and v− = ±(1, 1) towards which F f can be 
decreased.
13
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Fig. 3. Gradient of two parity functions. x1 ⊕ x2 has one saddle point: (0, 0). x1 ⊕ x2 ⊕ x3 has infinitely many saddle points: all points with at least two 
zero coordinates are saddle points. However, saddle points are not local minima, since there exist decreasing directions at each saddle point.

Proof. Though the statement considers every points in a ∈Rn , we point out that it is sufficient to only prove the case for 
the origin, a.k.a., a = 0. To see this, note that we can always shift the polynomial such that a is moved to 0. Indeed, shifting 
will not change the local geometry around the point we are considering. We can further assume that F (0) = 0 without loss 
of generality since subtracting F (a) does not change the geometry as well. Formally speaking, we can always consider the 
point 0 of the shifted polynomial, Fshift(x) = F (x + a) − F (a), instead of point a of F (x).

After simplifying the scenario, we prove Lemma 3 by induction on the number of variables n of F .
Basis step: Assume n = 1. Since F (0) = 0 and F is non-constant, we have F = αx1 for some α �= 0. By assigning 

v+ = (sgn(α)), v− = (−sgn(α)) and ε be any positive real number, then, for all δ s.t. 0 < δ < ε, we have:

F (0 + δv+) = |α| · δ > 0 = F (0),

F (0 + δv−) = −|α| · δ < 0 = F (0).

Inductive Step: Since F is a multilinear function with n ≥ 2 variables. By Fact 1, F can be decomposed as:

F (x1, . . . , xn) = x1 · g(x2, . . . , xn) + h(x2, . . . , xn),

where both g and h are multilinear polynomials not depending on x1. Since F is non-constant, without loss of generality, 
we assume g(x2, ..., xn) �≡ 0. Otherwise if g(x2, ..., xn) ≡ 0, then x1 is an irrelevant variable and we can use the next variable 
to decompose F .

The rest of this proof is provided by case analysis. Note that h(0) = 0 since F (0) = 0 · g(0) + h(0) = 0.

• If h is constant, i.e., h ≡ 0 = h(0). Then F = x1 g(x2, ..., xn).
– If g(x2, ..., xn) is constant, say g ≡ α. We are left with F = αx1, a case covered by the basis.
– If g(x2, ..., xn) is non-constant.
� If g(0) = 0, then by inductive hypothesis, there exist v+

g , v−
g and εg , such that g(δv+

g ) > 0 and g(δv−
g ) < 0 hold 

for every δ s.t. 0 < δ < εg . Set v+ = (1, v+
g ), v− = (1, v−

g ) and ε = εg . Now for all δ such that 0 < δ < ε,

F (0 + δv+) = δ · g(δv+
g ) > 0 = F (0)

F (0 + δv−) = δ · g(δv−
g ) < 0 = F (0)

It is worth mentioning that we could also set v+ = (−1, v−
g ) and v− = (−1, v+

g ).
� Else if g(0) �= 0, let

v+ = (sgn(g(0)), 0, . . . , 0)
14
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v− = (−sgn(g(0)), 0, . . . , 0)

and ε be an arbitrary positive number. For all δ such that 0 < δ < ε, we have

F (δv+) = δ · sgn(g(0)) · g(0) > 0,

F (δv−) = δ · (−sgn(g(0))) · g(0) < 0.

• If h is non-constant, by inductive hypothesis, there exist v+
h , v−

h and εh such that, h(δv+
h ) > 0, h(δv−

h ) < 0 hold for 
every 0 < δ < εh . We construct v+ = (0, v+

h ), v− = (0, v−
h ) and set ε = εh . For all δ such that 0 < δ < ε,

F (0 + δv+) = h(δv+
h ) > 0 = F (0),

F (0 + δv−) = h(δv−
h ) < 0 = F (0). �

Remark 4. The Hessian (the matrix of second-order derivatives) can provide intuition of why Theorem 4 holds. Note that 
for a multilinear polynomial F and a critical point a ∈ [−1, 1]n , ∂2 F

∂x2
i
(a) is zero for all i ∈ [n] and a. Therefore, all elements 

on the diagonal of the Hessian matrix H F (a) of a multilinear polynomial F at point a is zero and trace(H F (a)) = 0. Since 
trace(H F (a)) equals the sum of all eigenvalues of H F (a), then either 1) there exist a positive and a negative eigenvalue of 
H F (a) or 2) all eigenvalues of H F (a) are zero. If 1) holds, then there exist a increasing direction and a decreasing direction, 
as Theorem 4 states. Otherwise, if 2) holds, then the critical point a is degenerate. Degenerate points are possible in theory 
(see Example 9) but rarely observed in real-life instances.

Theorem 4 indicates for unconstrained, non-constant multilinear polynomials, no local minimum exists. On the other 
hand, after adding the bound [−1, 1]n , intuitively, a local minimum of F in [−1, 1]n can only appear on the boundary. 
Theorem 5 uses feasibility to formalize this intuition.

Theorem 5. If a ∈ [−1, 1]n is a local minimum of a multilinear polynomial F in [−1, 1]n, then a is feasible.

Proof. Since a is a local minimum, then for every i ∈ [n], either ai ∈ {±1} or ∂ F
∂xi

(a) = 0 holds.4 Otherwise the gradient 
would give us a direction to decrease the value of F . Let I = {i | ai ∈ {±1}}. Consider F |xI ←aI , where every variable in I is 
assigned to its value in a. We have a[n]−I is a critical point of F |xI ←aI since each derivative of variable with index in [n] − I
is zero.

Suppose F |xI ←aI is non-constant. Since a[n]−I is a critical point inside the cube, by Theorem 4, a[n]−I is a saddle point 
of F |xI ←aI , which means a is not a local minimum of F . Thus F |xI ←aI must be constant and it follows that a is feasible by 
Definition 6. �

Theorem 5 indicates that every local minimum a in [−1, 1]n is meaningful in the sense that it can be easily converted 
into a Boolean assignment b. Moreover, since b is a Boolean assignment, it is not hard to see that the number of constraints 
satisfied by b is m−F (a)

2 , which is a special case of Theorem 6 in the next section. Thus if a global minimum is too hard to 
reach, our method is still useful for some problems where quickly finding an assignment with good quality is enough, e.g., 
(weighted) MaxSAT.

In most multilinear polynomials generated from Boolean formulas in practice, saddle points rarely exist. However, there 
exist “pathological” polynomials that have uncountably infinite saddle points, as Example 9 shows.

Example 9. Let f = x1 ⊕ x2 ⊕ x3 ⊕ x4, then F f = x1x2x3x4. Therefore every point which has the form (x1, 0, 0, 0), (0, x2, 0, 0), 
(0, 0, x3, 0) or (0, 0, 0, x4) is a degenerate saddle point where both the gradient and Hessian are zero.

To illustrate saddle points, in Fig. 3 we plot the gradient of two parity constraints: x1 ⊕ x2 and x1 ⊕ x2 ⊕ x3.

3.5. A randomized rounding and expectation perspective

Before introducing our projected-gradient-descent-based algorithm for minimizing multilinear polynomials, we would 
like to explain why doing continuous optimization might be better than discrete local search by viewing the objective 
function F f from an expectation perspective.

Our explanation is, compared to local search SAT solvers which only make progress when the number of satisfied con-
straints increases, our tool makes progress as long as the value of the polynomial decreases, even by a small amount.

Theorem 6 formalizes the intuition. It indicates that when we decrease the value of the polynomial, we are in fact 
increasing the expectation of the number of satisfied constraints, after a randomized rounding.

4 This can also be obtained by the KKT conditions.
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Definition 10. (Randomized Rounding) The randomized rounding function, denoted by R : [−1, 1]n → {±1}n is defined by:{
P [R(a)i = −1] = − 1

2 ai + 1
2

P [R(a)i = +1] = + 1
2 ai + 1

2

for all i ∈ [n] and a ∈ [−1, 1]n .

Intuitively, the closer ai is to −1, the more likely R(a)i will be −1 and vice versa.

Definition 11. (Vector probability space) We define a probability space on Boolean vectors w.r.t. real point a ∈ [−1, 1]n , 
denoted by Sa : {−1, 1}n → [0, 1] by:

Sa(b) = P [R(a) = b] =
∏

bi=−1

1 − ai

2

∏
bi=1

1 + ai

2
,

for all b ∈ {−1, 1}n , with respect to the randomized-rounding function R. We use b ∼ Sa to denote that b ∈ {−1, 1}n is 
sampled from the probability space Sa .

Theorem 6. Given a multilinear polynomial F , for a real point a ∈ [−1, 1]n, we have

F (a) = E
b∼Sa

[F (b)],

where E denotes expectation.

Proof. We prove by induction on the number of variables n.
Basis step: Let n = 1. Then F = α · x1 for some α ∈R. We have

E
b∼Sa

[F (b)] = α · (a1

2
+ 1

2
) + (−α) · (−a1

2
+ 1

2
) = α · a1 = F (a)

Inductive step: Suppose n ≥ 2. Then, for b ∼ Sa , F (b) can be expanded as:

F (b) = 1−bn
2 · F |xn←(−1)(b[n−1]) + 1+bn

2 · F |xn←1(b[n−1])

Note that the value of bn and b[n−1] are independent, thus we have

E
b∼Sa

[F (b)]

= E
b∼Sa

[ 1−bn
2 · F |xn←(−1)(b[n−1]) + 1+bn

2 · F |xn←1(b[n−1])]

= 1−an
2 · E

b∼Sa

[F |xn←(−1)(b[n−1])] + 1+an
2 · E

b∼Sa

[F |xn←1(b[n−1])]

By I.H., the equation above can be simplified to:

E
b∼Sa

[F (b)]

= 1−an
2 · F |xn←(−1)(a[n−1]) + 1+an

2 · F |xn←1(a[n−1])
=F (a) �

Consider the multilinear polynomial generated by a formula according to Definition 2. We immediately derive the fol-
lowing corollary.

Corollary 2. Let f be a formula with m constraints and F f be the objective multilinear polynomial associated with f . Let mSAT(b) be 
the number of constraints satisfied by b ∈ {−1, 1}n. For a ∈ [−1, 1]n, we have

E
b∼Sa

[mSAT(b)] = m−F f (a)

2 .

In particular, if F f (a) = −m, then E
R(a)

[mSAT(R(a)] = m. Since mSAT(b) ≤ m for all b ∈ {±1}n , we have mSAT(R(a)) = m. 

Thus R(a) is a solution of f , which is consistent with Theorem 3.
16
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Proof. For a discrete point b ∈ {−1, 1}n ,

F f (b) = 1 · mSAT(b) + (−1) · (m − mSAT(b)) = 2mSAT(b) − m

Thus by Theorem 6, we have

E
b∼Sa

[mSAT(b)] = m

2
− 1

2
· E

b∼Sa

[F (b)] = m − F f (a)

2
. �

Remark 5. In fact, Theorem 3 can be proved independently from Theorem 6 without relying on multilinearity too much. 
However, we believe that the current order of presentation is more natural and informative.

Remark 6. The idea of evaluating Fourier Expansions and the result of Theorem 6 can find connections with circuit-output 
probability and spectral coefficients [81,82].

Related research showed that local search SAT solvers, such as GSAT, spend most of the time on the so-called “sideway” 
moves [14]. Sideway moves are moves that do not increase or decrease the total number of unsatisfied constraints. Although 
heuristics and adding noise for sideway moves lead the design of efficient solvers, e.g., WalkSAT, local search SAT solvers fail 
to provide any theoretical guarantee when making sideway moves.

It is illustrative to think of a cardinality constraint, e.g., the majority constraint which requires at least half of all the 
variables to be True. If we start from the assignment of all False, local search solvers need to flip at least half of all 
bits to make progress. In other words, local search solvers will encounter a neighborhood with exponential size where no 
progress can be made and any movements will be “blind”. In contrast, guided by the gradient, our method will behave like 
“flipping” all the variables by a small amount towards the solution zone.

We end this section by explaining why we choose the multilinear representation, since any arbitrary polynomial that 
maps [−1, 1]n to [−1, 1], probably with higher order, could be a candidate in our method. For example, higher order polyno-
mials have been used as the objective function for SAT solving [62]. We list the advantages of the multilinear representation 
over an arbitrary polynomial in the following.

1. The multilinear representation can handle all types of symmetric constraints while the polynomial representation in 
[62] only works for disjunctive clauses (CNF).

2. The value of the multilinear objective has a nice interpretation: the value of the polynomial is directly relevant with the 
expectation of the number of satisfied constraints. Moreover, all local minima can be rounded to binary assignments 
without any loss of objective value. Intuitively, all local optima are “almost” binary. In contrast, there can be “inner local 
optima” in higher order polynomial representations.

3. With properties of multilinear polynomials, the number of iterations needed for convergence (convergence speed) is 
bounded by a polynomial of the problem size, which will be shown in the next section.

4. The problems tested in the experiments of [62] are of relatively small size and easy (n < 100), while the instances 
in our experiments are considerably larger, as we will see in Section 5. This may be an evidence that the theoretical 
properties of multilinear polynomials are also beneficial in practice.

4. A gradient-descent-based algorithm for minimizing multilinear polynomials

In this section, we propose a set of algorithms for minimizing multilinear polynomials associated with Boolean formulas. 
We show promising theoretical guarantees that gradient-based algorithms can enjoy: a projected-gradient-descent-based 
algorithm converges to a critical point in polynomial time. We also explicitly consider the existence of saddle points and 
design algorithms to escape them though they seldom show up in practice.5

4.1. Non-convex optimization and saddle points

As mentioned in Definition 9, a saddle point is a point at which all the first derivatives are zero but there exist at 
least one positive and one negative direction. Again, saddle points are not local optima. In many cases, especially in those 
related to deep neural networks [83,84], the main bottleneck in optimization is not due to local minima, but the existence 
of many saddle points. Gradient based algorithms are in particular susceptible to the saddle point issue as they only rely 
on the gradient information. The saddle point problem is alleviated for second-order methods that also rely on the Hessian 
information [83]. Previous work such as [48,49] proposed that stochastic gradient descent with random noise is enough 
to escape saddle points. However, the strict saddle property, described in Definition 12, is either assumed or valid in the 
problems they studied.

5 In the experimental result session, we take advantage of elaborate optimization packages instead of directly implementing our algorithms. The code 
and benchmarks are available at https://github .com /vardigroup /FourierSAT.
17
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Definition 12. [48] (Strict saddle) Given a function F , a saddle point a is strict if all the eigenvalues of the Hessian at a are 
strictly negative, i.e., λmax(H F (a)) < 0. A function F has strict saddle property if all of F ’s saddle points are strict.

In contrast, strict saddle property is not valid for multilinear polynomials since there can be degenerate saddle points 
where all eigenvalues of the Hessian are zero (see Example 9 and Remark 4). Therefore, specific optimizing techniques for 
multilinear polynomials need to be designed.

4.2. Efficient evaluation of the objective function

Although theoretically the objective function can have up to 2n terms, we do not actually store all the coefficients and 
do a naive evaluation to get F f (a) for a ∈ [−1, 1]n . Instead, we leverage the symmetry of constraints to compute the value 
of Fourier Expansion of each constraint c, denoted as FEc(a), separately. By this trick, we are able to evaluate the objective 
function in O (

∑
c∈C f

length(c)2) time (in the worst case O (n2m)). Thus we can bypass considering data structures that store 

all coefficients of the multilinear polynomial.
First note that for every negative literal in a constraint, say ¬xi , we can convert it to positive by flipping the sign of 

ai , since applying a negation on a formula is equivalent to adding a minus sign to the Fourier Expansion in the Fourier 
domain.6

Now suppose c is a symmetric constraint with no negative literals. Thus c’s Fourier coefficients can be denoted as

Coef(FEc) = (̂c(∅), ĉ([1]), ĉ([2]), . . . , ĉ([length(c)])) .

Let esp(a) =
(

1,
∑length(c)

i=1 ai,
∑

i< j aia j, . . . ,
∏length(c)

i=1 ai

)
, known as the list of elementary symmetric polynomials. One 

can easily verify that FEc(a) = Coef(FEc) · esp(a), where “·” denotes the inner product of two vectors.
Computing esp(a) is equivalent to computing the coefficients of γ 0, γ 1, · · · , γ length(c) in the expansion of the following 

polynomial of γ , i.e.,

length(c)∏
i=1

(ai + γ ) = γ length(c) +
⎛⎝length(c)∑

i=1

ai

⎞⎠ · γ length(c)−1 + · · · +
length(c)∏

i=1

ai · γ 0

By a naive approach, the value of the list of elementary symmetric polynomials of size n can be computed in O (n2) time, 
which is efficient enough for small instance size. Thus we can evaluate the objective function in O (

∑
c∈C f

length(c)2 · m) or 

O (n2m) in the worst case.7

Since the gradient and Hessian of a multilinear polynomial are still multilinear [42], we are able to calculate them 
analytically by the method above instead of relying on automatic differentiation. In experiments, we observed that feeding 
gradients to the optimizer significantly accelerated the minimization process.

4.3. Our PGD-based multilinear optimization algorithm

Since the objective function is constrained, continuous and differentiable, projected gradient descent (PGD) [85] is a 
candidate for solving our optimization problem. When solving a non-convex problem, the initialization plays a key role in 
the optimization algorithm. We use random initialization for each iteration and return the best result within a time limit.

In Algorithm 1, we propose a PGD-based algorithm for multilinear optimization problem. In gradient descent, the itera-
tion for minimizing an objective function F is:

a′
(t+1) = a(t) − η · ∇ F (a(t)), a(t+1) = a′

(t+1),

where η > 0 is a step size and a(t), a(t+1), a′
(t+1) ∈Rn .

When the domain is bounded, a′
(t+1) may be outside of the domain. In PGD, we choose the point nearest to a′

(t+1) in 
[−1, 1]n as a(t+1) [86], i.e., the Euclidean projection of a′

(t+1) onto the set [−1, 1]n , denoted as 
∏

[−1,1]n (a′
(t+1)), as illustrated 

by Fig. 4.

Definition 13. The Euclidean projection of a point a, onto a set �, denoted by ��(a), is defined as

��(a) = arg mina′∈�

∥∥a − a′∥∥2
.

6 Here we assume each variable appears at most once in a constraint c.
7 In fact, there exists an FFT-based algorithm for evaluating the list of elementary symmetric polynomials of size n with complexity O (n log2 n). Moreover, 

such an algorithm has the potential of exploiting the power of GPU. We leave leveraging GPU-based FFT implementation for future work. Another work of 
ours that uses BDDs to significantly accelerate the evaluation and gradient computation is described in [82].
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Fig. 4. Projected gradient descent.

Algorithm 1: PGD for multilinear F .
Input : A multilinear polynomial F , the accuracy ε, the step size η.
Output : A point a� with low objective value.

1 for j = 1, . . . , J do
2 a(0) ∼ U [−1, 1]n

3 for t = 0, . . . , T do
4 G(a(t)) = 1

η

(
a(t) − �[−1,1]n

(
a(t) − η∇ F (a(t))

))
5 if ‖G(a(t))‖ > ε then
6 // the projected gradient is informative.
7 a(t+1) = a(t) − η · G(a(t))

8 else
9 // we meet a critical point or a local minimum.

10 if a(t) is not feasible then
11 a(t+1) = DecInnerSaddle(F , a(t), η) //a(t) is an inner saddle point
12 else
13 I = {i | (a(t))i ∈ {−1, 1}}
14 if ∇i F (a(t)) �= 0, ∀i ∈ I then
15 Break // Local minimum identified by Proposition 7.
16 else
17 // try some second-order methods.
18 (LocalMinFlag, a(t+1)) = useHessian(F , a(t))

19 if LocalMinFlag=True or Unknown then
20 Break

21 return a( j) with the lowest F (a( j)) after J iterations as a�

In our case � ≡ [−1, 1]n; computing such a projection is almost free, as shown in Proposition 2.

Proposition 2.

(
�[−1,1]n(a)

)
i =
{

ai, if ai ∈ [−1,1],
sgn(ai), otherwise.

Proof. – If ai ∈ [−1, 1], suppose 
(
�[−1,1]n (a)

)
i �= ai . Then we construct a vector z ∈ [−1, 1]n as follows. Let zi = ai and 

z j = (�[−1,1]n (a)
)

j for j �= i. We have z ∈ [−1, 1]n and ‖z − a‖2 ≤ ∥∥�[−1,1]n (a) − a
∥∥2

, a contradiction with the definition 
of the projection.

– If |ai | > 1, without loss of generality, suppose ai > 1 and 
(
�[−1,1]n (a)

)
i < 1 = sgn(ai). Let zi = 1 and z j = (�[−1,1]n (a)

)
j

for j �= i. Similarly, z ∈ [−1, 1]n and ‖z − a‖2 ≤ ∥∥�[−1,1]n (a) − a
∥∥2 still hold. �

Combining the above, the main iteration of PGD can be rewritten as

a(t+1) = �[−1,1]n
(
a(t) − η · ∇ F (a(t))

)= a(t) − ηG(a(t)),

where

G(a) = 1
η

(
a − �[−1,1]n (a − η∇ F (a))

)
is regarded as the gradient mapping, as marked in Fig. 4.

In Algorithm 1, we start at a uniformly random point in [−1, 1]n (line 2). When the norm of the gradient mapping G(·)
is large enough, we follow the gradient mapping to decrease the function value effectively, as formalized in Lemma 4.
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Otherwise, it means that the algorithm either reaches a local minimum in [−1, 1]n , or falls into a saddle point where the 
original gradient ∇ F (·) is negligible. If the first case happens we are done for this trial. Otherwise, we still try to escape the 
saddle point by additional methods. Note that the feasibility check in line 10 can be implemented by Definition 6 combined 
with constant testing (Algorithm 4).

4.4. Convergence speed of PGD

In Theorem 7, we show that Algorithm 1 is guaranteed to converge to a point where the projected mapping is small, i.e., 
‖G(a)‖ < ε, for a small accuracy level ε > 0, and depends polynomially on n, m and the tolerance ε.

Theorem 7. (Convergence speed) With the step size η = 1
nm , Algorithm 1 converges to a ε-projected-critical point a� (where 

‖G(a�)‖ < ε) in O (nm2

ε2 ) iterations in the worst case.

The proof of Theorem 7 relies on several propositions and lemmas that we will introduce and prove below. Some ideas 
of this part are inspired by techniques from [48] and [86].

The first observation, summarized in Proposition 3, indicates that multilinear polynomials on [−1, 1]n are relatively 
smooth.

Proposition 3. (Lipschitz) Let F : [−1, 1]n → [−α, α] be a multilinear polynomial where α > 0. Then, for every pair of points y, z ∈
[−1, 1]n, we have

1. |F (y) − F (z)| ≤ α
√

n · ‖y − z‖. I.e., F is (α
√

n)-Lipschitz continuous.
2. ‖∇ F (y) − ∇ F (z)‖ ≤ αn · ‖y − z‖. I.e., F has (αn)-Lipschitz continuous gradients.

3. ‖∇2 F (y) −∇2 F (z)‖ ≤
(
αn

3
2

)
· ‖y − z‖. I.e., F has 

(
αn

3
2

)
-Lipschitz Hessians. Here ‖·‖ on the left-hand-side refers to the spectral 

norm of a matrix, defined by the square root of the maximum eigenvalue of H� · H for a matrix H.

All the bounds are tight if we consider the parity function F (x) = ∏
i∈[n]

xi .

Proof. 1. By the triangle inequality,

|F (y) − F (z)| ≤ |F (y1, · · · , yn) − F (z1, y2, · · · , yn)|
+ |F (z1, y2, · · · , yn) − F (z1, z2, y3, · · · , yn)|
+ · · · + |F (z1, · · · , zn−1, yn) − F (z1, · · · , zn)|

= |(y1 − z1)∇1 F (y1, ..., yn)| + · · · + |(yn − zn)∇n F (z1, ..., zn−1, yn)|
Since ∇i F (x) = ∂ F (x)

∂xi
= 1

2 (F |xi←1(x) − F |xi←(−1)(x)) ∈ [−α, α] for all i ∈ [n], we have:

|(y1 − z1)∇1 F (y1, · · · , yn)| + · · · + |(yn − zn)∇n F (z1, · · · , zn−1, yn)|

≤α(

n∑
i=1

|yi − zi |) ≤ αn
1
2 ‖y − z‖

The last inequality is an application of Cauchy-Schwartz Inequality.
2. Note that we can view ∇ F (x) as a vector of n multilinear polynomials. In addition, ∇i F (x) = ∂ F (x)

∂xi
∈ [−α, α] for all 

i ∈ [n]. Thus we can apply 1. of Proposition 3 to all of these n multilinear polynomials:

‖∇ F (y) − ∇ F (z)‖ = (

n∑
i=1

(∇i F (y) − ∇i F (z))2)
1
2 ≤ (n · (αn

1
2 ‖y − z‖)2)

1
2

= αn ‖y − z‖
3. Recall that ∇2

i, j F (x) is the element at coordinate (i, j) of the second-order derivative matrix ∇2 F (x). Similarly, we 
have ∇2

i, j F (x) ∈ [−α, α] for all i, j ∈ [n]. Therefore, we can view ∇2 F (x) as n2 multilinear polynomials and apply 1 of 
Proposition 3 again.

In the following we will use the Frobenius norm of a matrix, i.e., ‖·‖F , defined by ‖H‖F =
√∑n

i=1
∑m

j=1 H2
i j , where 

H ∈Rn×m is a matrix. By ‖H‖ ≤ ‖H‖F , i.e., the spectral norm is no larger than Frobenius norm, we get:
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∥∥∥∇2 F (y) − ∇2 F (z)
∥∥∥

≤
∥∥∥∇2 F (y) − ∇2 F (z)

∥∥∥
F

=
√ ∑

i, j∈[n]
(∇2

i, j F (y) − ∇2
i, j F (z))2

≤
√

n2(α
√

n ‖y − z‖)2 (by 1 of Proposition 3)

=αn
3
2 ‖y − z‖ �

Now that we know that multilinear polynomials are smooth from Proposition 3, the next thing to do is to bound 
the progress made by each iteration, as shown in Lemma 4. In order to prove Lemma 4, we first present several useful 
intermediate results, namely Proposition 4, 5 and 6. As well-known results in optimization, the proofs of Proposition 4 and 
6 are taken from [87,88] respectively with some modifications, so that this paper is self-contained.

Proposition 4. [87] Let h be a convex and differentiable function defined on a convex set �, let y� = arg min
y∈�

h(y), then for all y ∈ �

we have

〈∇h(y�), y − y�〉 ≥ 0

Proof. Assume that there exists y ∈ � such that

〈∇h(y�), y − y�〉 < 0

Consider the function g(γ ) = h(y� + γ (y − y�)), γ ∈ [0, 1]. Note that

g(0) = h(y�)

∇g(0) = lim
ε→0

h(y� + ε(y − y�)) − h(y�)

ε
= 〈∇h(y�), y − y∗〉 < 0

Therefore for small enough γ we have:

h(y� + γ (y − y�)) = g(γ ) < g(0) = h(y�)

This is a contradiction. �
Proposition 4 is useful because given a point a /∈ �, the square of the l2-norm used in the projection (see Definition 13), 

a.k.a., 
∥∥a − a′∥∥2

, is a convex function of a′ ∈ �. We leverage this fact to prove Proposition 5, which indicates that the gradient 
mapping G is “not too far” from the direction of the original gradient ∇ F . Therefore, the gradient mapping G should be an 
effective descending direction, given that the search is restricted within the box constraints.

Proposition 5. (Inequality of gradient mapping) Given a function F defined on a convex set �, for every a ∈ �, we have

〈∇ F (a), G(a)〉 ≥ ‖G(a)‖2

where G(a) = 1
η (a − �� (a − η∇ F (a))) is the gradient mapping.

Proof. The readers are encouraged to refer to Fig. 4 for an intuitive illustration. Let h(y) = ‖y − (a − η∇ F (a))‖2 for y ∈ �. 
Then h(y) is a convex function. Since arg min

y∈�

h(y) is exactly the projected point, i.e., a − ηG(a), by Proposition 4, for all 

y ∈ � we have

〈∇h(a − ηG(a)), y − (a − ηG(a))〉 ≥ 0

Note that ∇h(a − ηG(a)) = 2((a − ηG(a)) − (a − η∇ F (a))) = 2η(∇ F (a) − G(a)). Let y = a, the above inequality becomes:

〈2η(∇ F (a) − G(a)),ηG(a)〉 ≥ 0

and the statement follows directly. �
Proposition 6 is a consequence of Lipschitz continuity which is widely used in optimization.
21



A. Kyrillidis, A. Shrivastava, M.Y. Vardi et al. Artificial Intelligence 299 (2021) 103559
Proposition 6. [87] Let F be a β-Lipschitz continuous function on Rn. Then for every y, z ∈Rn, we have

|F (y) − F (z) − 〈∇ F (z), (y − z)〉| ≤ β

2
‖y − z‖2

Proof. We represent F (y) − F (z) as an integral, apply Cauchy-Schwarz and then β-Lipschitz continuous.

|F (y) − F (z) − 〈∇ F (z), (y − z)〉|

=
∣∣∣∣

1∫
0

〈∇ F (z + t(y − z)), (y − z)〉dt − 〈∇ F (z), (y − z)〉
∣∣∣∣

≤
1∫

0

‖∇ F (z + t(y − z)) − ∇ F (z)‖ · ‖y − z‖dt (Cauchy-Schwarz)

≤
1∫

0

βt ‖y − z‖2 dt (β-Lipschitz continuous)

=β

2
‖y − z‖2 �

With the help of Proposition 6, Lemma 4 quantitatively measures the progress made by one iteration guided by the 
gradient mapping G .

Lemma 4. (Descent Lemma) For a multilinear polynomial under box constraints F : [−1, 1]n → [−α, α] and its projected gradient 
mapping G(·), if the step size satisfies η ≤ 1

αn , then the projected gradient descent (PGD) sequence {a(t)} satisfies:

F (a(t+1)) − F (a(t)) ≤ −η
2 ‖G(a(t))‖2.

Proof. According to the (αn)-gradient Lipschitz continuity property in Proposition 3, applying Proposition 6, we have:

F (a(t+1)) ≤ F (a(t)) + 〈∇ F (a(t)), a(t+1) − a(t)〉 + αn
2 · ‖a(t+1) − a(t)‖2

= F (a(t)) − η〈∇ F (a(t)), G(a(t)〉 + η2αn
2

∥∥G(a(t))
∥∥2

Applying Proposition 5 and η ≤ 1
αn , we have

F (a(t+1)) ≤ F (a(t)) − η
2

∥∥G(a(t))
∥∥2 �

Now we are ready to prove Theorem 7, the result regarding convergence speed.

Proof of Theorem 7. Assume that η = 1
nm . Then, the recursion in Lemma 4 satisfies:

F (a(t+1)) ≤ F (a(t)) − 1
2nm ‖G(a(t))‖2.

Combining all the iterations together, for T iterations, we have:

F (a(T +1)) ≤ F (a(T )) − 1
2nm ‖G(aT )‖2

F (a(T )) ≤ F (a(T −1)) − 1
2nm ‖G(a(T −1))‖2

...

F (a(1)) ≤ F (a(0)) − 1
2nm ‖G(a(0))‖2

Summing all these inequalities, and under the observation that F (a�) ≤ F (a(T +1)), we get the following:

1
2nm

T∑
t=0

‖G(a(t))‖2 ≤ F (a(0)) − F (a�).
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Fig. 5. Identifying local optima by Proposition 7. When all gradients at a are “pushing” a towards the boundary “tightly”, a is a local optimum.

This implies that, even if we continue running gradient descent for many iterations, the sum of gradient norms is always 
bounded by something constant; this indicates that the gradient norms that we add at the very end of the execution has to 
be small, which further implies convergence to a stationary point.

Further, we know:

(T + 1) · min
t

‖G(a(t))‖2 ≤
T∑

t=0

‖G(a(t))‖2.

Then,

T +1
2nm · min

t
‖G(a(t))‖2 ≤ 1

2nm

T∑
t=0

‖G(a(t))‖2 ≤ F (a(0)) − F (a�)

⇒ min
t

‖G(a(t))‖2 ≤ 2nm
T +1 · (F (a(0)) − F (a�)

)
min

t
‖G(a(t))‖ ≤

√
2nm
T +1 · (F (a(0)) − F (a�)

) 1
2 = O

(
1√
T

)
.

Note that |F (a(0)) − F (a∗)| ≤ m. Thus, to achieve a point such that ‖G(a(T ))‖ ≤ ε, we require:

min
t

‖G(a(t))‖ ≤ ε ⇒
√

2nm
T +1 · (F (a(0)) − F (a�)

) 1
2 ≤ ε ⇒ O

(
nm2

ε2

)
iterations. �

4.5. Identifying local optima and escaping saddle points

As non-convex functions, constrained multilinear polynomials are inherently difficult to minimize. In this subsection, we 
show our efforts towards identifying local optima and escaping saddle points by approaches from different levels, including 
using first-order gradient, second-order Hessian and geometry of multilinear polynomials.

4.5.1. First-order methods
Although Algorithm 1 could not eliminate the possibility of converging to a saddle point under some pathological cases 

(see Example 9), it is able to detect local minima by some sufficient conditions. Proposition 7 gives a sufficient condition 
based on gradient information. See Fig. 5 for an illustration.

Proposition 7. When Algorithm 1 reaches line 15, a is a local minimum. I.e., if a is feasible, G(a) = 0 and ∇i F (a) �= 0 for all i ∈ I (i.e., 
ai ∈ {−1, 1}), then a is a local minimum in [−1, 1]n of F .

Remark 7. In the context of discrete local search algorithms for SAT, a binary assignment that satisfies the condition in 
Proposition 7 is a point where flipping one arbitrary bit will strictly decrease the number of satisfied constraints. Thus this 
point is also a local optimum in discrete context. Note that in discrete context there are local optima where flipping one 
arbitrary bit does not change the objective. However, such a point is not necessarily a local minimum in our continuous 
setting. In other words, our approach has the potential to find decreasing directions for local minima in the discrete domain, 
as demonstrated in Example 10.

Example 10. Let f = x1 ∧ x2, then F f = 1
2 + 1

2 x1 + 1
2 x2 − 1

2 x1x2. As Fig. 6 shows, (1, 1) is a local minimum in the discrete 
setting. However, (1, 1) is not a local minimum in the continuous space.
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Fig. 6. The 3D-surface of the polynomial 1
2 + 1

2 x1 + 1
2 x2 − 1

2 x1x2, which is the Fourier Expansion of x1 ∧ x2.

Proof of Proposition 7. First, we consider the state of each coordinate of a. For every i ∈ [n], by the definition of gradient 
mapping and (G(a))i = 0 we have

ai = �[−1,1](ai − η∇i F (a)).

• If ai ∈ (−1, 1), i.e., a /∈ I , since a is feasible, then ∇i F (a) = 0.
• Else we have i ∈ I . If ai = −1, by the definition of projection and a is a fixed point, we have ∇i F (a) > 0. Similarly, if 

ai = 1, then ∇i F (a) < 0.

Next, we need to prove that a has the lowest function value among all the points in the intersection of a’s neighborhood
Nδ(a) and cube [−1, 1]n . Consider all the directions v (‖v‖ �= 0) where a can move a small step to and a +η · v still remains 
in Nδ(a) ∪ [−1, 1]n . We have the following constraints for v:{

vi ≥ 0, if ai = −1,

vi ≤ 0, if ai = 1.

If ai ∈ (−1, 1), there is no restriction for vi .

– If for all i ∈ I , vi = 0. Since a is feasible, changing the value of variables with indices only from [n] − I does not change 
the function value. Thus F (a) = F (a + η · v) and a is a trivial local minimum.

– Else, there exists i′ ∈ I s.t. vi′ �= 0. The directional derivative at a in direction v , denoted as ∇v F (a), can be computed 
by:

∇v F (a) = 〈v,∇ F (a)〉 =
∑
i∈[n]

vi∇i F (a).

First, note that vi∇i F (a) ≥ 0 for all i ∈ [n], thus ∇v F (a) ≥ 0. Since ∇i′ F (a) �= 0 and vi′ �= 0, we have ∇v F (a) > 0. 
Therefore, moving from a by the direction v will increase the objective value. In other words, F (a) < F (a + η · v) and a
is a local minimum. �

4.5.2. Leveraging the geometry of multilinear polynomials
From Theorem 4 we know that for a multilinear polynomial in the unconstrained setting, there is always a decreasing 

direction despite of the position of the point. Thus for every interior point, a.k.a., every point in (−1, 1)n , we can always 
decrease the function value. DecInnerSaddle (Algorithm 2) implements this idea.

Note that Fshift in line 2 of DecInnerSaddle is the shifted polynomial function where a is shifted to the origin with 
Fshift(0) = 0. After shifting the objective function, Algorithm 2 invokes Algorithm 3, which is a recursive implementation 
of Lemma 3 (see Remark 3). Note that isZero is used for checking if a point is feasible by testing whether a multilinear 
polynomial is equivalent to 0. We use Example 11 to demonstrate how our algorithm can escape from a saddle point.

Proposition 8. Suppose the procedure isZero is always correct. When a is a non-feasible critical point, Algorithm 2 always gives a 
decreasing direction.

Proof. Algorithm 2 is a recursive implementation of Lemma 3. �
Example 11. Consider the case in Example 5 and Fig. 2, where f = (x1 ∨ ¬x2)∧(¬x1 ⊕x2) and F f = − 1

2 + 1
2 x1 − 1

2 x2 − 3
2 x1x2. 

Suppose Algorithm 2 is at the saddle point x1 = − 1 , x2 = 1 . Then Fshift(x) = F f (x1 − 1 , x2 + 1 ) − F f (− 1 , 1 ) = − 3 x1x2 =
3 3 3 3 3 3 2
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x1 · (− 3
2 x2) + 0. By the notations in Lemma 3, we have h(x2) = 0 is constant and g(x2) = − 3

2 x2 is non-constant but with 
g(0) = 0. Thus by recursively invoking Algorithm 3 on F = − 3

2 x2 we get a decreasing direction v− = (1, −sgn(− 3
2 )) = (1, 1).

Algorithm 2: DecInnerSaddle(F , a, η).
Input : A multilinear polynomial F , a non-feasible critical point a, the step size η > 0.
Output : The new point after moving towards a negative direction.

1 I ← {i | ai ∈ {−1, 1}}
2 Fshift(x) := F |xI ←aI (x + a[n]−I ) − F (a)

3 v = NegDirectionSaddle(Fshift)
4 return a + η · v

Algorithm 3: NegDirectionSaddle(F ).
Input : A multilinear polynomial F that satisfies F (0) = 0.
Output : A negative direction v− of F at point 0

1 /* See the proof of Lemma 3 */
2 /* F = x1 · g + h */
3 if isZero(F |x1←0) = True then
4 // h is constant
5 if isZero(F |x1←1 − F (1, 0, ..., 0)) = True then
6 // g is constant
7 v− = (−sgn(F |x1←1), 0, ..., 0)

8 else
9 // g is non-constant

10 if F (1, 0, ..., 0) = 0 then
11 // g(0) = 0
12 v− = (1, NegDirectionSaddle(F |x1←1))

13 else
14 // g(0) �= 0
15 v− = (−sgn(F (1, 0, ..., 0), 0, ..., 0))

16 else
17 // h is non-constant
18 v− = (0, NegDirectionSaddle(F |x1←0))

19 return v−

Algorithm 4: isZero(F ).
Input : A polynomial F
Output : Correct answer of True/False on [F ≡ 0] with probability at least 1 − n

|S| //See Proposition 11

1 Let S ⊂R be a finite large set.
2 a ∼ U [Sn]
3 return True if F (a) = 0, otherwise False

Algorithm 5: useHessian(F , x).
Input : A polynomial F , a feasible critical point a.
Output : a ∈ [−1, 1]n ;

LocalMinFlag ∈ {True,False,Unknown} which indicates if a is a local minimum of F in [−1, 1]n .

1 Let J = { j | ∇ F (a) j = 0} and I = {i | ai ∈ {±1} ∧ i ∈ J }
2 H = ∇2 F |(x[n]− J )←(a[n]− J )(a J )

3 if there exist i ∈ I, j ∈ J − I such that Hij �= 0 then
4 v = (0, 0, ..., vi = −sgn(ai), 0, ..., 0, v j = sgn(ai · Hij), 0, ..., 0) // see Proposition 9
5 return (a + η · v , False)
6 else if there exist i1, i2 ∈ I such that Hij · ai1 ai2 < 0 then
7 v = (0, 0, ..., vi = −sgn(ai1 ), 0, ..., 0, v j = −sgn(ai2 ), 0, ..., 0) // see Proposition 9
8 return (a + η · v , False)
9 else if ∀i, j, i �= j, at least one of i and j is in I such that Hij �= 0 then

10 return (a, True) // See Proposition 10
11 else
12 return (a, Unknown) //We meet a very rare degenerate saddle point on the boundary. Do random restart
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4.5.3. Second-order methods
Algorithm 2 and 3 only work if the saddle point is an inner point of the cube. If Algorithm 1 falls into a point which is 

on the boundary of the cube but not a local minimum, it invokes useHessian to use second-order derivatives, attempting 
to give a negative direction, or to identify a local minimum. Proposition 9 and 10 provide sufficient conditions for finding 
negative directions and identifying local minima by second-order Hessian information, respectively.

Remark 8. The Hessian-based approaches in the continuous setting can be interpreted as the counterpart of flipping two 
variables simultaneously in the discrete local search setting.

Proposition 9. When Algorithm 5 reaches line 4 or 7, v is a negative direction of F , i.e., there exist step size η > 0 such that F (a +ηv) <
F (a) and a + ηv is within the cube [−1, 1]n.

Proof. Consider partially assigned function F ′ = F |x[n]− J ←a[n]− J . By definition of J , ∇ F ′(a J ) = 0. In the following cases, we 
introduce the second directional derivative of F ′ at a J in direction v , denoted by ∇2

v F ′(a J ), which can be computed by:

∇2
v F ′(a J ) =

∑
i, j∈ J

vi v j Hij = 2 ·
∑

i, j∈ J ,i �= j

vi v j Hij,

where H is the Hessian of F ′ at a J and the last step follows by multilinearity of F ′ (Hii = 0 for every i ∈ [n]).

– Suppose Algorithm 5 reaches line 4. First note that given η being small enough, a J +η · v ∈ [−1, 1]| J | because ai ∈ {±1}
and ai − η · sgn(ai) ∈ [−1, 1] for all i ∈ I; a j ∈ (−1, 1) and a j + sgn(ai · Hij) ∈ [−1, 1] for all j ∈ I − J . Moreover, the 
following holds:

∇2
v F ′(a J ) = 2 · (−sgn(ai))sgn(ai · Hij) · Hij < 0.

Thus, moving towards direction v from a will decrease ∇v F ′ . Since ∇ F ′(a J ) = 0 we have ∇v F ′(a J ) = 0. Therefore 
∇v F ′(a J + ηv) < 0 and F ′(a J + v) < F ′(a J ), which means that v is a negative direction of F ′ at a. v is also a negative 
direction of F at a since v keeps coordinates of a in [n] − J unchanged.

– Suppose Algorithm 5 reaches line 7. It is easy to verify that a J + η · v ∈ [−1, 1]| J | . Meanwhile,

∇2
v F ′(a J ) = 2 · (−sgn(ai1))(−sgn(ai2)) · Hij < 0

Note that the inequality follows by the condition in line 6 of Algorithm 5. Similar analysis with the case above guaran-
tees v is a negative direction. �

Proposition 10. When Algorithm 5 reaches line 10, a is a local minimum.

Proof. Again, let F ′ = F |x[n]− J ←a[n]− J . We have ∇ F ′(a J ) = 0. Recall that

∇2
v F ′(a J ) = 2

∑
i, j∈ J ,i �= j

vi v j Hij

Consider all the directions v (‖v‖ �= 0) where a + η · v ∈ [−1, 1]| J | . When the algorithm executes line 10, neither of 
condition in line 3 nor 6 holds. In addition, Hij = 0 holds for every i, j ∈ J − I because a J is a feasible assignment of F ′ . 
Thus F ′|xI ←aI is constant. Therefore vi v j Hij ≥ 0 for all i, j ∈ J and ∇2

v F ′(a J ) = 2 
∑

i, j∈ J ,i �= j
vi v j Hij ≥ 0.

– If v has two or more non-zero elements, then ∇2
v F ′(a J ) > 0. Since ∇v F ′(a J ) = 0, F ′(a J ) < F ′(a J + ηv).

– Else if v has only one non-zero element, say v1 �= 0, then ∇2
v F ′(a J + η · v) = H11 = 0. Thus moving towards direction v

from a does not change ∇v F ′ . Combining this fact and ∇1 F ′(a J ) = 0, we know that moving towards v does not change 
F ′ , i.e., F ′(a J ) = F ′(a J + ηv).

Therefore, a J is a local minimum of F ′ .
Next, we will show a is a local minimum of F as well. Suppose a is not a local minimum of F and there exists v s.t. 

a + η · v ∈ [−1, 1]n and F (a + η · v) < F (a). Then there exists i ∈ [n] − J s.t. vi �= 0, otherwise a J is not a local minimum 
of F ′ . However, recall that G(a) = 0 and ∇i F (a) �= 0 since i ∈ [n] − J . The directional derivative ∇v F (a) > 0 holds by similar 
analysis in the proof of Proposition 7, which conflicts with F (a + η · v) < F (a). �

In Proposition 8 we assume that isZero is always correct. While this can be done by using symbolic representations of 
multilinear polynomials, in practice it is not efficient. Instead, we can use a light approach to check whether a polynomial 
is constant probabilistically. As a result of the Schwartz-Zippel Lemma, Proposition 11 shows how we can test whether a 
multilinear polynomial is constant with high probability when we sample from a large finite subset of the universe.
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Proposition 11. (Schwartz-Zippel Lemma) Let F :Rn →R (F �≡ 0) be a multilinear polynomial and S ⊂R be a finite set with |S| > n. 
If we pick a point a = (a1, · · · , an), where each element is sampled independently and uniformly at random from S, then

P
a∼U[Sn]

[F (a) = 0] ≤ n

|S| .

Therefore, if a multilinear polynomial is not constant, we are able to find a witness by � ln δ
ln n

|S|
� samples with probability 

at least 1 − δ.

4.6. Weighted case

The weighted version of the objective function is defined as

F f ,w =
∑
c∈C f

w(c) · FEc

where w : C f → R is the weight function. It is easy to verify that the weighted version of Theorem 3 and Theorem 5 still 
hold. The weighted case can be useful in the following cases:

• Vanishing Gradient. When a constraint contains a large number of variables (e.g., a global cardinality constraint), we 
observe that the gradient given by this constraint on a single variable becomes negligible. By assigning large weights to 
long constraints, the varnishing gradient problem can be alleviated.

• Adaptive Weighting. By increasing the weights of unsatisfied constraints, the landscape of the objective function can 
be refined and the algorithm might be able to escape local optima. This technique has been applied in discrete local 
search SAT/MaxSAT solvers [53,23].

• Weighted MaxSAT. Our tool can be easily adapted to accepting weighted MaxSAT problems.

5. Experimental results

In this section we compare our tool, FourierSAT with state-of-the-art SAT and MaxSAT solvers.

5.1. Experiment setup

We choose SLSQP [89], implemented in scipy [90] as our optimization oracle, after comparing available algorithms for 
non-convex, constrained optimization.

Since random restart is used, different iterations are independent. Thus, we parallelized FourierSAT to take advantage 
of the multicore computation resource. Each experiment was run on an exclusive node in a homogeneous Linux clus-
ter. These nodes contain 16-processor cores at 2.63 GHz each with 1 GB of RAM per node. We implement two versions 
of FourierSAT, namely the single-core version FourierSAT-1core and the multi-processor version FourierSAT-
16core. The time cap (wall-clock time) for each job is 1 minute.

We compare our method with the following SAT/pseudo-Boolean solvers:

• Cryptominisat [37] (CMS), an advanced SAT solver supporting CNF+XOR constraints by enabling Gauss Elimination.
• WalkSATlm [91], an efficient C implementation of the local search SAT algorithm WalkSAT.
• MiniCARD [38], a MiniSAT-based CARD-CNF solver. It has been implemented in pysat [92].
• MonoSAT [41], a SAT Modulo Theory solver which supports a large set of graph predicates.
• RoundingSAT [40], a conflict-driven-pseudo-Boolean-Search-based (CDPB) solver.
• NAPS [93] and Open-WBO [94], two pseudo-Boolean solvers based on CDCL SAT solver cores,

and the following MaxSAT solvers:

• Loandra [95], the best partial MaxSAT solver in MaxSAT Competition 2019.
• WalkSAT (v56) [15], an incomplete MaxSAT solver based on WalkSAT algorithm.
• Discrete local search. We implemented a naive version of local search SAT solver. Per iteration, we flip the bit which 

can maximize the number of satisfied constraints until no improvements can be made. Ties are broken randomly.

MiniCARD can handle cardinality constraints natively. For MonoSAT, we reduced cardinality constraints to Max-Flow. For 
CMS and WalkSAT, we applied a set of cardinality encodings, which includes Sequential Counter [96], Sorting Network [97], 
Totalizer [98] and Adder [99]. For the sake of clarity, we only show the results of the best and worst encoding for each 
solver in the plots. For pseudo-Boolean constraints, all disjunctive clauses are treated as cardinality constraints. For solvers 
that do not support XORs, we used a linear encoding due to [100] to decompose them into 3-CNF. To alleviate the vanishing 
gradient issue, in FourierSAT, the weight of each constraint equals to its length.
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Fig. 7. Results on 500 vertex covering problems. The legends are sorted according to the performance of solvers.

Fig. 8. Results on 300 parity learning with error problems. The legends are sorted according to the performance of solvers.

5.2. Benchmarks

We generated instances with hybrid Boolean constraints from the following benchmark problems.8

Benchmark 1: Approximate minimum vertex covering Minimum vertex covering is a well-known NP-optimization problem 
(NPO). For each n ∈ {50, 100, 150, 200, 250}, we generated 100 random cubic graphs. For each graph, Gurobi [101] was 
used to compute the minimum vertex cover, denoted by Opt. Then we added one cardinality constraint, CARD≤k where 
k = �1.1 · |Opt|� to the CNF encoding of vertex covering.

Benchmark 2: Parity learning with error Parity Learning is to identify an unknown parity function given I/O samples. In other 
words, the task is to learn the subset of variables which appear in the unknown parity function. Suppose there are n
candidate variables and m I/O samples. A solution to this problem is allowed to be incorrect on at most (e · m) I/O samples. 
For e = 0 the problem is in P (Gaussian Elimination); for 0 < e < 1

2 , whether the problem is in P still remains open. Parity 
learning is a well-known hard problem for SAT solvers, especially for local search solvers [102].

We chose N ∈ {8, 16, 32}, e = 1
4 and m = 2n to generate hard cases. For FourierSAT, this problem can be encoded into 

solving M XOR constraints where we allow at most eM constraints to be violated by using the -tolerance option. For 
WalkSAT and CMS, we used the encoding due to [103].

Benchmark 3: Random CNF-XOR-CARD formulas For each n ∈ {50, 100, 150}, r ∈ {1, 1.5}, s ∈ {0.2, 0.3}, l ∈ {0.1, 0.2} and k ∈
{0.4n, 0.5n}, we generated random benchmarks with rn 3-CNF constraints, sn XOR constraints with length ln and 1 global 
cardinality constraint CARD≤k . Those parameters are chosen to guarantee that all problems are satisfiable [104] [105].

Benchmark 4: Small-size MaxSAT benchmarks We gathered 575 instances from the crafted and random track of MaxSAT 
competition 2016. We do not consider partial MaxSAT cases with both hard and soft constraints. The reason is that, in those 
cases, a feasible assignment should first satisfy all the hard constraints, which is non-trivial for FourierSAT.

5.3. Results

The experimental results of four benchmarks above are shown in Fig. 7, 8, 9 and Table 3 respectively. The legends in 
figures and entries in the table are sorted according to the ranking of solvers.

8 All benchmarks are available at https://github .com /vardigroup /FourierSAT.
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Fig. 9. Results on 4800 random CNF-XOR-CARD problems. The legends are sorted according to the performance of solvers.

Table 3
Results on MaxSAT instances.

Methods Avg. Score #Win

WalkSAT 0.926 168
FourierSAT-16core 0.917 223
Mixing Method 0.901 285
Loandra 0.883 47
FourierSAT-1core 0.865 35
Discrete Local Search 0.843 56

Fig. 7 shows the results on the vertex covering benchmarks. First of all, all three pseudo-Boolean solvers (Round-
ingSAT, NAPS and OpenWBO) quickly solved all instances, followed by CMS with different encodings. Compared with solvers 
that naturally handle cardinality constraints, the single core version FourierSAT-1core solved more problems (367) 
than MiniCard (261) but less than MonoSAT (420). The performance of two versions of FourierSAT is between that 
of WalkSATlm with the worst (Adder, 307) and the best (SeqCounter, 500) encoding. With the help of 16 processors,
FourierSAT-16cores was able to solve 472 instances.

In Fig. 8 for parity learning problem, CMS+CNF-XOR encoding was able to solve all instances. The competition of
FourierSAT-1core (290) and CMS with pure CNF formula (292) is roughly a tie. WalkSATlm with CNF encoding only 
solved 79 problems. By exploiting 16 cores, FourierSAT-16core solved all 300 problems.

According to the results on random hybrid constraints benchmarks shown in Fig. 9, CMS with different encodings wins 
with a large margin (4605 instances solved by Totalizer and 4520 by SeqCounter). FourierSAT-1core (2245) solved 
almost the same number of problems with WalkSATlm equipped with the worst encoding (SeqCounter, 2272). With more 
cores FourierSAT-16core (2957) is able to beat WalkSATlm with the best encoding (Totalizer, 2452) in the “unfair” 
competition.

Table 3 lists the results on MaxSAT benchmarks. We adapted FourierSAT to an incomplete MaxSAT solver and com-
puted the score, which is often used as a merit in the evaluation of MaxSAT Competition, for each solver on each instance. 
For a given instance, let the number of violated constraints given by i-th solver be costi . Let the least number of violated 
constraints from results of all solvers be costbest . Then the score for solver i on the case is:

scorei = costbest + 1

costi + 1

For each solver, we also count the number of instances where this solver provides the solution with the best cost among all 
solvers (#Win). While WalkSAT (v56) achieves the best average score, FourierSAT-16core provides the second best 
performance on both the average score and #Win. With a single core, FourierSAT-1core still exhibits a better average
score than the naive discrete local search.

Summary. We would like to emphasize the fact that FourierSAT is a versatile solver, which is especially valuable 
when we observe that different encodings do make a difference for CNF solvers. Thus it is not surprising that FourierSAT
can be outperformed by specialized solvers. For example, when it comes to handling cardinality constraints, it is still better 
to choose pseudo-Boolean solvers over both FourierSAT and CNF solvers with encodings. The general performance of 
our proof-of-concept implementation of FourierSAT on a single core is generally less competitive than that of mature 
SAT/MaxSAT solvers. However, when given more cores, FourierSAT is comparable with many existing, well-developed 
solvers. This gives us the hope that with a refined implementation, our framework might be able to exhibit more satisfactory 
performance as a versatile solver. We believe that algebraic methods are worth exploring for the Boolean SAT/MaxSAT 
community in the future.
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6. Conclusion and future directions

In this paper, we propose a novel algebraic framework for solving Boolean formulas consisting of hybrid constraints. 
Fourier Expansions are used to reduce Boolean satisfiability to multilinear optimization. Our study on the landscape and 
properties of multilinear polynomials leads to the discovery of attractive features of this reduction. Furthermore, to show 
the algorithmic benefits of this reduction, we design algorithms with certain theoretical guarantees. Finally, we implement 
our method as FourierSAT. The experimental results indicate that in practice, the proof-of-concept implementation of
FourierSAT is able to handle hybrid Boolean constraints and can be a useful complement to state-of-the-art solvers on 
certain benchmarks by leveraging parallelization. A more mature and efficient implementation of our framework is still 
desirable.

We also list a few future directions in the following.

• Complete algebraic SAT solvers. Besides giving solutions to satisfiable formulas, we also aim to prove unsatisfiability 
algebraically. In other words, we hope to design a complete SAT solver based on algebraic approaches. Several algebraic 
proof systems, such as Hilbert’s Nullstellensatz and Gröbner basis (e.g., [106–108]) can be used for giving an algebraic 
proof of unsatisfiability. We are interested to see if Fourier Expansions can be used in any proof systems in practice to 
make FourierSAT a complete solver.

• Escaping local minima and saddle points. As a local-information-based approach, FourierSAT suffers from getting 
stuck in local minima and relies heavily on random restart. We believe the idea of “sideway moves” from Local 
Search SAT solvers [14] is a good direction to address these issues. For example, one can use the solution of WSAT 
(FourierSAT) as the initial point of FourierSAT (WSAT). We also would like to consider gradient descent ap-
proaches with random noise [48], and how they perform on escaping saddle points both in theory and practice. 
Furthermore, how to take advantage of the searching history to search the continuous space more systematically, e.g., 
designing smarter restart protocols, is another interesting problem.

• Alternative objective functions. The Fourier Expansions of constraints with large number of variables and low solution 
density can be much less smooth, which is one of the main disadvantages of FourierSAT in practice. To refine the 
objective function, one possible way is to develop better weight functions, which can be static or dynamic. Due to the 
techniques for learning Fourier coefficients [109,43], it is also promising to use the low-degree approximation of Fourier 
Expansions as the objective function.
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