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Abstract—We study convex optimization problems that feature
low-rank matrix solutions. In such scenarios, non-convex meth-
ods offer significant advantages over convex methods due to their
lower space complexity, as well as practical faster convergence. Un-
der mild assumptions, these methods feature global convergence
guarantees. In this paper, we extend the results on this matter by
following a different path. We derive a non-Euclidean optimization
framework in the non-convex setting that takes nonlinear gradi-
ent steps on the factors. Our framework enables the possibility to
further exploit the underlying problem structures, such as sparsity
or low-rankness on the factorized domain, or better dimensional
dependence of the smoothness parameters of the objectives. We
prove that the non-Euclidean methods enjoy the same rigorous
guarantees as their Euclidean counterparts under appropriate as-
sumptions. Numerical evidence with Fourier ptychography and
FastText applications, using real data, shows that our approach
can enhance solution quality, as well as convergence speed over the
standard non-convex approaches.

Index Terms—Non-convex optimization, low-rank approxima-
tion, non-Euclidean gradient descent.
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I. INTRODUCTION

W E STUDY convex minimization problems with respect
to a matrix variable:

min
X∈X⊆Rp ×q

f(X), (1)

where X is either the positive semi-definite (PSD) cone (in
which case p = q) or the whole space. Let X� be the optimal
solution of (1). We are interested in the scenario where r� �
rank(X�) � min{p, q}. Such a formulation spans a wide spec-
trum of applications in machine learning and signal processing
[1]–[16].

Given low-rankness at the optimum, recent research has
suggested the following recipe for solving (1): Fix a number
r � p, q as close as possible to r� , and factorize X = UV � (or
X = UU� in the PSD case), where U ∈ Rp×r and V ∈ Rq×r .
Then, recast (1) as:

min
U,V

g(U, V ) := f(UV �). (2)

Since the program (2) is non-convex, it is impossible to prove
global convergence without additional assumptions. To this end,
the typical approach is to assume that the initialization is close
to the global optimum in some sense, and prove that simple
gradient descent for U and V provably converges to the global
minimum.

In theory, such an approach relies on unverifiable initializa-
tion conditions and hence is not fully satisfactory. Nonetheless,
it has yielded wide success in practice [5], [13], [17], [18]. In
particular, the assumption of good initialization can often be
met using heuristics, for instance multiple trials of random ini-
tialization or running a few iterations of gradient descent on the
original matrix variable space; see, for instance, Section VI.

Following the recipe (2), we ask whether we can further
exploit the problem structures in the non-convex setting. For
instance, in phase retrieval, the decision variable X ∈ Rd2 ×d2

of
the convex problem (1) is obtained by lifting a vectorized image
U ∈ Rd2 ×1 . However, the original image, whose natural domain
is Rd×d , often exhibits further low-rankness, a useful structure
not revealed in the vectorized form. Is there an algorithm that
directly runs in Rd×d and features low-rank updates, similar to
the Frank-Wolfe method [19] in the convex case, while retaining
the guarantees enjoyed within the non-convex research vein?

As another motivating example, recent studies in computer
science [20] and machine learning [21]–[23] have shown that
the log-softmax function [24], with important applications in
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deep learning and natural language processing, converges much
faster when a nonlinear operation is applied to each gradient
step. Is there an analogous result in the non-convex setting,
again retaining the favorable global convergence?

In this paper, we show that the above-posed questions can
be addressed by the non-Euclidean optimization framework in a
unified fashion. To promote sparse (or low-rank) iterates, such
as for the phase retrieval application, we show that gradient
descent on U in the nuclear norm enjoys rank-1 updates in the
natural image domain Rd×d . For optimizing the log-softmax
function, we employ gradient descent in the spectral norm, and
show that the advantages observed in [20]–[23] carry over to
the non-convex setting.

Most importantly, we prove that, under the similar assump-
tion of a good initialization, our non-Euclidean methods prov-
ably converge to the global optimum.

Akin to previous work, we empirically verify the initialization
assumption, through extensive experiments on the real data.
Numerical evidence with Fourier Ptychography andFastText
applications shows that our approach can significantly enhance
solution quality as well as speed over the standard non-convex
approaches.

Related work: For solving (1) with PSD constraint, [25] and
[26] popularized the factorization idea leading to the formulation
(2). In recent years, there has been a large body of literature [13],
[27]–[32] studying the convergence guarantees under factoriza-
tion, while most of them only apply to the quadratic loss. For
generic convex loss, [17] focused on (1) with PSD constraint.
The analysis was further extended in [18] to unconstrained prob-
lems. Another recent work [33] studied the convergence from
both statistical and algorithmic perspectives, with distinct as-
sumptions.

To the best of our knowledge, we are the first to introduce and
analyze non-Euclidean gradient steps for solving the factor-
ized formulation (2). All of the aforementioned works employ
Euclidean gradient descent steps for variables U, V in (2).

On a related note, the work [21] studied the spectral gradi-
ent method for optimizing log-softmax functions in the deep
learning realm, which reduces to matrix factorization when a
two-layered neural network is considered. However, no conver-
gence guarantee to the global optimum was provided.

For completeness, we further mention another line of research
which focuses on the Riemannian geometry of matrices; see [34]
for a comprehensive survey and [35], [36] for recent develop-
ments. Despite also having a non-Euclidean gradient feature,
these works are distinct from our work as they do not utilize
the factorization in (2). The only exception we know of is [37],
where the convergence guarantees for Riemannian first-order
methods are proved for (1) with linear objectives under PSD +
affine constraints. It is interesting to see if the techniques in [37]
can be used to analyze general f under our setting, or whether
our non-Euclidean algorithms succeed for the tasks in [37].

II. BACKGROUND

A. Notations

Given a matrix X , we use σi(X) to denote its i-th largest
singular value. We use ‖ · ‖∗, ‖ · ‖S∞ and ‖ · ‖F to denote

nuclear norm, spectral norm and Frobenius norm, respectively.
The Schatten-p norm of a matrix X , denoted by ||X||Sp

, is

defined as (
∑

i σp
i (X))1/p .

We define a parameter τ(X) ≡ σmax(X )
σmin(X ) . Xr denotes the best

rank-r approximation of X , and therefore σi(Xr ) = σi(X) for
1 ≤ i ≤ r. For a given matrix U , we use QU to denote the ma-
trix constituted of an orthonormal basis of the column space
of U . Note that QU QT

U is the projection operator of the col-
umn space of U and thus QU QT

U U = U . Given two matrices
X,Y ∈ Rp×q , the Hilbert-Schmidt inner product is denoted by
〈X,Y 〉 = Tr(X�Y ).

For two real numbers a and b, the minimum of them is denoted
by a ∧ b.

B. Matrix Operators

For any matrix X , let X = PΛR� be its singular value de-
composition (SVD). We define:

� The nuclear #-operator: Let Pmax and Rmax be the left and
right singular vectors corresponding to the largest singular
value of X . Then, the nuclear #-operator corresponds to

[X]#∗ � σ1(X)PmaxR
�
max. (3)

That is, [X]#∗ is the best rank-1 approximation of X .
� The spectral #-operator: Let rank(X) = r. Then, the

spectral #-operator corresponds to

[X]#∞ �
(

∑

i

σi(X)

)

· PIrR
� = ‖X‖∗ · PIrR

�, (4)

where Ir ∈ Rp×q has 1’s on the first r diagonal entries,
and 0 otherwise. Notice that [X]#∞ has the same rank as X ,
but with singular values all equal to ‖X‖∗.

To motivate the above definition and notation, we remark
that (3) and (4) are instances of the so-called duality map in
Banach spaces [38]. Let (X � , ‖ · ‖�) be a general Banach space,1

(X , ‖ · ‖) be its dual space, and let 〈·, ·〉 : X � ×X → R denote
the dual pair [39]. The (possibly set-valued) duality map # :
X � → X maps a point X ∈ X � to an element of the dual space
X# ∈ X satisfying the following relation:

〈
X,X#〉

= ‖X#‖2 = (‖X‖�)2 . (5)

One can easily verify that [·]#∗ is the duality map when (X , ‖ ·
‖) = (Rp×q , ‖ · ‖∗); that is, the following relation holds for any
X ∈ Rp×q :

〈
X, [X]#∗

〉
= ‖[X]#∗ ‖2

∗ = ‖X‖2
S∞ , (6)

in which case the dual pair becomes the Hilbert-Schmidt inner
product. Similarly, [·]#∞ is the duality map when (X , ‖ · ‖) =
(Rp×q , ‖ · ‖∞).

We quote some properties of the nuclear and spectral #-
operators.

Properties 1: For any differentiable function f , it holds

(∀X,Y ) ‖∇f(Y ) −∇f(X)‖∗ ≤ L‖Y − X‖S∞ (7)

1The reason why we choose X � , instead of the normal X , to denote the
underlying space is due to the fact that our algorithms use #-operators on the
gradients, which naturally live in the dual space.
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if and only if

(∀X,Y ) f(Y ) ≤ f(X) + 〈∇f(X), Y − X〉

+
L

2
‖Y − X‖2

S∞ . (8)

Moreover,

X − 1
L

[∇f(X)]#∞ ∈ arg min
Y

f(X) + 〈∇f(X), Y − X〉

+
L

2
‖Y − X‖2

S∞ . (9)

Also, for any differentiable function f , it holds

(∀X,Y ) ‖∇f(Y ) −∇f(X)‖S∞ ≤ L‖Y − X‖∗ (10)

if and only if

(∀X,Y ) f(Y )≤ f(X) +〈∇f(X), Y − X〉 +
L

2
‖Y − X‖2

∗ .

(11)

Moreover,

X − 1
L

[∇f(X)]#∗ ∈ arg min
Y

f(X) + 〈∇f(X), Y − X〉

+
L

2
‖Y − X‖2

∗ . (12)

One can see conditions (7), (8), (10), and (11) as similar to
the classic smoothness definition, but in different norms. The
proof of (7) ≡ (8) and (10) ≡ (11) can be found in [20], [40].
A simple derivation of (9) can be found in [21]; (12) is proved
using similar techniques.

C. Review of Euclidean Methods

Recall the objective in (1) and the factorized form in (2). We
first focus on the PSD-constrained case

min
U ∈Rp ×r

g(U) � min
U ∈Rp ×r

f(UU�). (13)

The simplest algorithm for solving (13) is to do gradient descent
on U , which corresponds to the iterates

Ui+1 = Ui − ηi∇g(Ui) = Ui − ηi∇f(UiU
�
i ) · Ui. (14)

We adopt the same settings as [17], [18], who analyzed (14)
applied to (13). The high-level message of these work is that, as
alluded to in the introduction, a good initialization is sufficient
to ensure convergence to the global optimum; cf., [17, Th. 4.1]
and [18, Th. 4.4].

III. NON-CONVEX NUCLEAR GRADIENT METHODS FOR

PSD-CONSTRAINED PROBLEMS

We consider the Nuclear Gradient Descent for solving (13).
Before giving convergence guarantees, let us first motivate with
a concrete example.

Algorithm 1: Nuclear Gradient Descent for (13).

Input: X0 = U0U
�
0 , step-sizes ηi .

for i = 0, 1, . . . , k − 1 do
Ui+1 = Ui − ηi [∇f(UiU

�
i ) · Ui ]

#
∗

end for
Return: Uk

Consider the phase retrieval application:2

min
x∈Rd ×d

n∑

i=1

(
bi − |〈ai, x〉|2

)2
(15)

where bi = |〈ai, x
�〉|2 + wi is the noisy observation under the

true image x� ∈ Rd×d , the measurement ai ∈ Rd×d , and noise
wi . The inner product here is in the Hilbert-Schmidt sense.

As (15) is a non-convex problem, the standard approach first
vectorizes x� and ai into U� ∈ Rd2 ×1 and Ai ∈ Rd2 ×1 , and then
rewrites the observations in the equivalent form:

bi = TrAiA
�
i U�U�� + wi. (16)

Renaming Ai := AiA
�
i and X� := U�U��, the program (15)

now turns into a convex problem

min
X∈Rd 2 ×d 2

‖b −A(X)‖2
2 (17)

for an appropriate linear operator A. The solution we wish to
recover, the X� , is then rank-1.

The program (17) is of the form (13), and hence existing
gradient methods apply. However, the non-convex framework
in [17] sets r = 1 (or a small number r � d) in (13), and hence
the image is now viewed as a vector in Rd2 ×1 . Such an operation
does not utilize the underlying structure of natural images, which
exhibit low-rankness when viewed as in Rd×d .

In this section, we show that the non-Euclidean methods pro-
vide a framework for simultaneously exploiting the computa-
tional efficiency of factorized gradient methods, and the addi-
tional low-rank structures of natural images. We achieve the
desiderata in two steps. First, we show that the nuclear gradi-
ent method, for any factorization, gives rise to rank-1 updates,
and we prove that the nuclear gradient method possesses similar
convergence guarantees to the Euclidean counterpart. Second,
we consider a general factorization through tensor product,
which allows us to preserve the structure of images even in the
factorized domain U . Finally, if the objective is strongly convex,
we provide a variant of our algorithm achieving linear rate.

A. Convergence Rate of Nuclear Gradient Descent for
PSD-Constrained Programs

We propose Algorithm 1, which is obtained by simply apply-
ing the [·]#∗ -operator to the gradients in (14).

Let X� = U�(U�)� be the global optimum, and define

D∗(U1 , U2) ≡ min
R is unitary

‖U1 − U2R‖∗. (18)

2Strictly speaking, the variable x in (15) should be Cd×d or R2d×2d . We
write x ∈ Rd×d for notational convenience. Same for the measurements ai ’s.
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Under a good initialization, we prove that Algorithm 1 converges
to the global optimum.

Theorem 1: Assume that rank(X�) = r, ∇f(·) ∈ Rp×p

is symmetric and f being convex and LS1 →S∞-smooth:
‖∇f(X) −∇f(Y )‖S∞ ≤ LS1 →S∞‖Y − X‖∗. Assume also
that

D̃∗ ≡ max
U :f (U U �)≤f (U0 U �

0 )
D∗(U,U�) ≤ σr (U�)

10
. (19)

If the step-size is chosen according to ηi ≤ γi ≡ 1
4(

1
LS 1 →S ∞‖Xi ‖S ∞

∧ 1
‖∇f (Xi )‖S ∞

)
, then we have

f(UkU�
k ) − f(U�U��) ≤ 4.5 D̃2

∗
∑k−1

i=0 ηi

,

and mini γi ≥ 1
4 η, where

η ≡
(

1
LS1 →S∞( 11

9 )2‖X0‖S∞
∧

1
40LS 1 →S ∞

81 σr (U0)σ1(U0) + ‖∇f(X0)‖∗

)

.

In particular, to avoid computing γi at each iteration, we can
simply set ηi = η and still attain the convergence rate O

( 1
k

)
.

Proof: See Section A in the supplementary material. �
Remark 1: It is worth noting that the smoothness assumption

is on the original convex objective f(X), not the factorized
problem f(UU�). The same remark applies to Theorems 2
and 3 below.

B. Factorizing Through Tensor Products

Let A ∈ Rd1 ×d2 and B ∈ Rd3 ×d4 be two matrices. Their ten-
sor product A ⊗ B ∈ Rd1 d3 ×d2 d4 is given, in the block matrix
form, by

A ⊗ B = [aijB]ij (20)

where aij is the (i, j)-th entry of A.
Recall the convex formulation of the phase retrieval problem

(17). Instead of factorizing the variable X ∈ Rd2 ×d2
into UU�

for some U ∈ Rd2 ×1 , we now consider the factorization through
tensor product. That is, we consider the factorized variable as
U ∈ Rd×d , and we decompose the original problem (13) as

min
U ∈Rd ×d

g(U) � f(U ⊗ U). (21)

Evidently, the program (21) still preserves the rank-1 property
of the solution X� ∈ Rd2 ×d2

to the convex problem, as we
can always vectorize the solution to (21) into U� ∈ Rd2 ×1 and
output X� := U�U��. However, notice now that the decision
variable operates in Rd×d , which is the natural ambient space
for images.

Motivated by the above observations, we propose
Algorithm 2, which is the analogue of Algorithm 1 with the
tensor product factorization.

The theorem and analysis of Theorem 1 generalizes imme-
diately to the above algorithm, except that the last term of (19)

needs to be replaced by the equivalent quantity
√

σr (X ∗)
10 . We

Algorithm 2: Nuclear Gradient Descent for (21).
Input: Initial point X0 = U0 ⊗ U0 , step-sizes ηi .
for i = 0, 1, . . . , k − 1 do

Ui+1 = Ui − ηi [∇f(Ui ⊗ Ui) · Ui ]
#
∗

end for
Return: Uk

Algorithm 3: Nuclear Gradient Descent for (13).

Input: Initial point X0 = U0U
�
0 , step-sizes ηi .

for i = 0, 1, . . . , k − 1 do
Ui+1 = Ui − ηi [∇f(UiU

�
i )]#∗ · Ui

end for
Return: Uk

provide a complete proof in Section B of the supplementary
material.

C. Linear Rate for Smooth and Strongly Convex Objectives

In this subsection, we show that linear convergence can be at-
tained for smooth and strongly convex objectives, as in classical
convex optimization theory.

We apply Algorithm 3 to solve (13). Notice the subtle
difference between Algorithm 1 and Algorithm 3: The up-
dates of Algorithm 1 are based on [∇f(UU�) · U ]#∗ , whereas
Algorithm 3 uses [∇f(UU�)]#∗ · U.

Let X� be the global optimum and denote its best rank-r
approximation as X�

r = U�(U�)�. If X� is exactly rank-r, then
X� ≡ X�

r .
Theorem 2: Assume ∇f(·) ∈ Rp×p is symmetric. Let f be

both L-smooth ‖∇f(X) −∇f(Y )‖S∞ ≤ L‖Y − X‖∗ and μ-
strongly convex f(Y ) ≥ f(X) + 〈∇f(X), Y − X〉 + μ

2 ‖Y −
X‖2

∗ . Denote κ = L
μ and define

DF (U1 , U2) ≡ min
R is unitary

‖U1 − U2R‖F ,

D̃F ≡ max
U :f (U U �)≤f (U0 U T

0 )
DF (U,U�),

D̃∗ ≡ max
U :f (U U �)≤f (U0 U T

0 )
D∗(U,U�), (22)

and ρ ≡ 1
100κτ (X �

r ) .

Assume that D̃F ≤ ρσr (U�
r ), ‖X� − X�

r ‖F ≤ 1
200κ1 . 5 τ (X �

r )

σr (X�), and D̃∗ ≤ 1
81κ

σr (X � )
σ1 (U � ) . If we choose step-sizes as ηi =

1
16(L‖Ui U �

i ‖S ∞+‖∇f (Ui U �
i )# QU i

Q�
U i

‖S ∞ ) , then we have

DF (Ui+1 , U
�
r )2 ≤ αiDF (Ui, U

�
r )2 + βi‖X� − X�

r ‖F (23)

where αi = 1 − 0.7 μ σr (X � )
2 ηi and βi = L

2 ηi . We also have
mini≥0 ηi ≥ 1

16 η, where

η ≡ 1

L
(

1+ρ
1−ρ

)2
‖X0‖S∞ + 4Lσ1 (U0 )σr (X � )

81κσ1 (U � )(1−ρ) + ‖∇f(X0)‖S∞

.

That is, when the rank of the optimum X� is equal to
or less than r, then we have linear convergence in the dis-
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tance measure DF (Uk , U�) ≤ ᾱkDF (U0 , U
�) where ᾱ � 1 −

0.7 μ σr (X � )
2 η̄ < 1.

Proof: See Section C in the supplementary material. �
The above theorem highlights that our framework applies

to approximately low-rank minimizers. Given a minimizer X�

with rank(X�) = r� , assume that we have factorized the prob-
lem with rank r. Then, the analysis (after replacing σr (Ui) by
max{σr (U�), σr (Ui)} ) shows that our algorithms converge to
the best rank-r approximation of X� if r < r� , and converge to
X� if r > r� , with the same rate.

IV. NON-CONVEX SPECTRAL GRADIENT METHODS FOR

PSD-CONSTRAINED PROBLEMS

We consider the Spectral Gradient Descent for solving (13).
Our main motivation is to tackle the matrix version of the log-
sum-exp function (24), which has important applications in deep
learning and natural language processing.

Consider the log-sum-exp function over vectors z ∈ Rd :

lse(z) = log
d∑

i=1

exp(zi), (24)

which is obtained by applying Nesterov’s smoothing to the max
function [41]. It arises naturally as the main part of the log-
softmax function [24] in machine learning.

Standard calculation shows

∀z, z′ ∈ Rd ‖∇lse(z) −∇lse(z′)‖2 ≤ 1
2
‖z − z′‖2 , (25)

which implies that lse is 1
2 -smooth in the Euclidean norm. Using

‖ · ‖2 ≤ √
d‖ · ‖∞ and ‖ · ‖2 ≥ 1√

d
‖ · ‖1 , one expects that lse

should be d
2 -smooth in the �∞-norm. However, a careful analysis

[41] gives

∀z, z′ ∈ Rd ‖∇lse(z) −∇lse(z′)‖1 ≤ ‖z − z′‖∞ (26)

which reveals that lse is in fact 1-smooth in the �∞-norm, vastly
improving upon the naı̈ve estimate d

2 . In the vector case, the
property (26) hints upon the use of the spectral #-operator,
which has led to impressive progress in computer science [20]
and machine learning [21]–[23].

We propose to perform spectral #-operator on the matrix
problems, as there are important matrix variants of log-sum-exp
function; see the FastText application in Section VI. The
convergence is analyzed in Section IV-A, and in Section IV-B
we show that the same calculation leading to (26) generalizes
to the matrix-variate lse as well.

A. Convergence Rate of Spectral Gradient Descent for
PSD-Constrained Programs

We consider Algorithm 4, which is obtained by applying the
[·]#∞-operator to the gradient updates.

Let X� = U�(U�)� be the global optimum. Define

D∞(U1 , U2) ≡ min
R unitary

‖U1 − U2R‖S∞ . (27)

Similar to Theorem 1, under a good initialization, we can
guarantee the convergence to the global optimum.

Algorithm 4: Spectral Gradient Descent for (13).

Input: X0 = U0U
�
0 , step-sizes ηi .

for i = 0, 1, . . . , k − 1 do
Ui+1 = Ui − ηi [∇f(UiU

�
i ) · Ui ]#∞

end for
Return: Uk

Theorem 3: Assume that rank(X�) = r, ∇f(·) ∈ Rp×p is
symmetric, and f is convex and LS∞→S1 -smooth, i.e.,
‖∇f(X) −∇f(Y )‖∗ ≤ LS∞→S1 ‖Y − X‖S∞ . Assume also
that

D̃∞ ≡ max
U :f (U U �)≤f (U0 U �

0 )
D∞(U,U�) ≤ σr (U�)

10
. (28)

If the step-size is chosen according to ηi ≤ γi ≡ 1
4

( 1
LS ∞→S 1 ‖Xi ‖S ∞

∧ 1
‖∇f (Xi )r ‖∗ ), then we have after k iterations:

f(UkU�
k ) − f(U�U��) ≤ 4.5 D̃2

∞
∑k−1

i=0 ηi

, (29)

and mini γi ≥ 1
4 η, where

η ≡
(

1
LS∞→S1 (

11
9 )2‖X0‖S∞

∧ 1
40LS ∞→S 1

81 σr (U0)σ1(U0) + ‖∇f(X0)r‖∗

)

.

In particular, to avoid computing γi at each iteration, we can
simply set ηi = η and still attain the convergence rate O

( 1
k

)
.

Proof: See Section D in the supplementary material. �

B. Convergence Comparison the Matrix-Variate lse Function

Let f be a matrix-variate function of the form

f(A) = lse(Ax), A ∈ Rd ′×d (30)

where x ∈ Rd is a fixed vector and the lse function is given
in (24).3 Such functions appear, for instance, in the final layer
of deep neural networks [24] or the FastText application
[42], [43].

We show that the smoothness parameters for (30) exhibit
similar comparison as (25) and (26) in the vector case.

Lemma 1: Let f(A) := lse(Ax) for a fixed vector x. Then f
is convex. Moreover, for all A,A′ ∈ Rd ′×d , we have

‖∇f(A) −∇f(A′)‖F ≤ 1
2
‖x‖2

2 · ‖A − A′‖F (31)

and

‖∇f(A) −∇f(A′)‖S1 ≤ ‖x‖2
2 · ‖A − A′‖S∞ . (32)

In other words, LS2 →S2 = ‖x‖2
2

2 and LS∞→S1 = ‖x‖2
2 .

Proof: See Section E in the supplementary material. �

3We do not assume A to be constrained in the PSD cone in this subsection.
The convergence guarantees for general A is given in Section V.
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We now compare the convergence rates between Algorithm 4
and the Euclidean method with, say, Gaussian initialization, ap-
plied to the matrix lse function (30). Without loss of generality,
assume that ‖x‖2

2 = 1 (otherwise one can define a new decision
variable Ã := ‖x‖2

2 · A and minimize over Ã) and d > d′. Then
the bound (29) dictates the convergence rate

f(Xk ) − f(X�) = O

(
d

k

)

,

whereas the Euclidean counterpart (see [17, eq. (9)]) is

f(Xk ) − f(X�) = O

(√
d′d
k

)

.

As a result, by exploiting the favorable S∞ geometry for the
matrix lse function, one can obtain an O(

√
d′) improvement

over standard gradient method, which can be significant when
the dimension is large.

V. CONVERGENCE RATE FOR NON-PSD PROGRAMS

So far, we have only considered PSD-constrained problems
(13). In this section, we show that the guarantees in previous
sections can be extended to unconstrained programs via a lifting
trick [44].

Consider the asymmetrically factorized program:

min
X∈Rp ×q

f(X) � min
U ∈Rp ×r ,V ∈Rq ×r

f(UV �). (33)

Define W =
[

U
V

]

∈ R(p+q)×r , and define a new objective by

f̂(WW�) = f̂

([
UU� UV �

V U� V V �

])

:= f(UV �). (34)

It is easy to verify the following:
� Wi+1 = Wi − ηi [∇f̂(WiW

�
i )Wi ]

#
∗ is equivalent to

[
Ui+1

Vi+1

]

=

[
Ui

Vi

]

− ηi

2

[
∇f(UiV

�
i )Vi

∇f(UiV
�
i )�Ui

]#

∗
. (35)

� Wi+1 = Wi − ηi [∇f̂(WiW
�
i )Wi ]#∞ is equivalent to

[
Ui+1

Vi+1

]

=

[
Ui

Vi

]

− ηi

2

[
∇f(UiV

�
i )Vi

∇f(UiV
�
i )�Ui

]#

∞
. (36)

Moreover, we can relate the smoothness of f̂ to that of f ; the
following lemma generalizes Proposition 3.1. of [18].

Lemma 2: Let f̂

([
A B
B� D

])

� f(B) be defined on the

PSD cone. Suppose that f is convex and L-smooth in some
Schatten-p norm:

‖∇f(X) −∇f(Y )‖Sq
≤ L‖Y − X‖Sp

, (37)

where q, p satisfies 1
p + 1

q = 1. Suppose also that∇f(·) ∈ Rp×p

is symmetric. Then f̂ is convex and L-smooth in the same norm;
i.e., f̂ also satisfies (37).

Proof: See Section F in the supplementary material. �

Hence, if we apply (35) (resp. (36)) to the lifted objective
(34), then the results in Section IV-A (resp. Section III-A) hold
(with obvious changes in the constants).

VI. EXPERIMENTS

Two real-world applications are considered: Fourier Ptychog-
raphy and text classification via the FastText architecture.
The former application has a PSD-constrained objective, and
the latter unconstrained. We show that the tensor-based Algo-
rithm 3 exploits the low-rank structure of natural images, and
hence leads to state-of-the-art performance on synthetic and real
data. For the latter application, we show that spectral gradient
descent leads to considerable speedups.

A. Fourier Ptychography

We consider the task of Fourier Ptychography reconstruction,
a computational imaging technique that aims to reconstruct a
high-resolution image based on a collection of low-resolution
samples [45], [46]. Ptychography reconstruction is subclass of
Phase Retrieval, and the factorized gradient method for such
applications has the domain name Wirtinger Flow [6], with rank
parameter r = 1.

We consider Algorithm 3, henceforth referred to as nuclear
Wirtinger flow, for ptychography reconstruction. As a base-
line comparison, we first perform extensive comparison against
existing algorithms for synthetic data in Section VI-A1. In
Section VI-A2, we show that the nuclear Wirtinger flow is the
only algorithm that succeeds for detecting malaria infection in
a reasonable amount of time.

1) Synthetic Data: We adopt the same setting as the online
library PhasePack [47]: In (15), we choose ai’s from empirical
measurements obtained by an optical device [48]. A synthetic
image is passed through these measurements using (15), and we
report the images of various algorithms returned in 5 minutes.
We perform parameter sweeping for all recovery algorithms to
find the best setting.

The results are reported in Fig. 1; for more results, see
Section G in the supplementary material.

Since the true image in the synthetic data is simple, many
of the non-convex algorithms, including Wirtinger flow and nu-
clear Wirtinger flow, succeed in recovering the image quickly
and yield comparable results. On the other hand, the convex
methods, such as the SketchyCGM [49], only return noisy fig-
ures given limited time. The Truncated Amplitude Flow method,
while known to perform well in the coded diffraction model
[50], fails to recover even simple images in the ptychographic
reconstruction.

2) Real Data: We use the real dataset provided by the au-
thors of [46]. The dataset consists of Fourier ptychographic mea-
surements taken from patients with malaria infection, where the
number of samples is 185600 and the image to be recovered
contains 6400 pixels. The critical task is to obtain reconstruc-
tions that allow clear identification of the infected cells. The
objective function for Fourier ptychography falls under the cat-
egory of (13); we adopt the same setups as in [46], and we refer
the readers to the reference for details.
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Fig. 1. Comparison of phase retrieval algorithms, synthetic dataset 1.
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Fig. 2. Fourier ptychography reconstructions.

TABLE I
TIME COMPARISON

We incorporated four algorithms: the Wirtinger and nuclear
Wirtinger flow, which are the best-performing non-convex meth-
ods in Section VI-A1, the Fienup [51], a classical method in
computational imaging, and SketchyCGM [49], a convex algo-
rithm that directly solves the unfactorized problem (17). The
step-sizes are obtained by parameter sweeping.

Fig. 2 presents the reconstruction images from various meth-
ods. All implementations are in MATLAB. We take 20 random
initializations for the Wirtinger and nuclear Wirtinger flow, and
we report the best reconstruction. We run 1000 iterations for all
the algorithms except for Fienup (also known as “Alternating
Projections” in [46]), for which the reconstruction is provided
by the authors of [46] without implementation details.

From Fig. 2, we see that the infected cells are clearly visible in
the nuclear Wirtinger Flow as boxed in red. The SketchyCGM
algorithm, as a convex method, is time-consuming but fairly
robust, and it returns the second best image in terms of quality.
However, the infected cells are barely visible from the recon-
struction, even though it takes 70 times as the nuclear Wirtinger
flow (cf., Table I). The Fienup and Wirtinger Flow produce seri-
ous artifact, and the latter completely fails to recover the image.

Table I compares the running time for all the algorithms ex-
cept for Fienup. We observe that our method results in 66%
computational time overhead compared to Wirtinger flow, but

the overall running time is still reasonably short. On the other
hand, while we expect SketchyCGM to recover the same qual-
ity of the image as the nuclear Wirtinger flow, provided that we
run it for more iterations, the high-dimensional nature of the
problem renders the running time fairly slow.

A more detailed comparison between nuclear Wirtinger Flow
and Wirtinger Flow can be found in Section H of the supple-
mentary material.

B. Text Classification by FastText

Text classification is one of the most important tasks in Nat-
ural Language Processing. Recently, a simple model, called
FastText, has been proposed to solve text classification prob-
lems for very large corpus with large output space. The Fast-
Text assumes that the input-output relation of text classification
can be explained by a large matrix C ∈ Rp×q , and the objec-
tive is to minimize the log-softmax output over training data
{(xn , yn )}N

n=1 :

min
C∈Rp ×q

− 1
N

N∑

n=1

yn log f(Cxn ). (38)

The key idea of FastText is to fix a small intermediate value
r, and decompose C = AB� where A ∈ Rp×r and B ∈ Rq×r .
The role of r is twofold: First, it speeds up the training process
by constraining the decision variable to small rank. Second, it
prevents overfitting due to the excessive number of parameters
in the large matrix C. We refer to [42], [43] for further details.

The main component of the objective in (38) is the matrix-
variate lse in (30). Motivated by the results in Section IV-B,
we propose to run Algorithm (36) for the factorized program of
(38), with r fixed to 10. From (38), one can infer that computing
the gradient takes O (pqr + rN min{p, q}) time, and hence the
overhead of the [·]#∞ operation (which takes O

(
r2 min{p, q}))

is negligible, as N � r.
We test the iterate (36) (the red curve in Figs. 3 and 5) on 6

datasets whose information can be found in [52]. The baseline
we compare to is the gradient descent algorithm (the black
curve in Figs. 3 and 5 in the supplementary material) proposed
in [43]. We have also included a heuristic approximation of the
iterates (36) (the blue curve in Figs. 3 and 5 in the supplementary
material), by employing

[
A

B

]#

∞
�

[
[A]#∞
[B]#∞

]

.

All the experiments are implemented in C++, and run on the
processor Intel Xeon CPU E5-2630 v3 @ 2.40 GHz. Learning
rates for each of the algorithms are obtained through 5-fold
cross-validation.

Fig. 3 shows the training and test performance on two datasets.
The heuristic version of (36) performs the best in terms of
training errors. However, the theoretical iterate (36) generalizes
the best. In all cases, the spectral iterates outperform the classic
gradient descent. These observations are consistent throughout
our experiments; see Section I of the supplementary material
for more evidence.



HSIEH et al.: NON-EUCLIDEAN GRADIENT DESCENT FRAMEWORK FOR NON-CONVEX MATRIX FACTORIZATION 5925

Fig. 3. Top row: Training loss for YahooAnswers, and test accuracy for YahooAnswers. Bottom row: Training loss for dbpedia, and test accuracy for
dbpedia.

VII. CONCLUSION

This paper introduces a non-Euclidean, first-order methods
into the factorization framework for solving (1). The framework
is easy to implement. We provide rigorous convergence rates,
under assumptions akin to the classical gradient methods. We
demonstrate the empirical success of our algorithms on phase
retrieval and text classification.

We would like to note that for the phase retrieval application,
there is a growing literature of algorithms, with different speed
enhancements. We note that with the additional twists, many
of these state-of-the-art methods perform well when applied
to synthetic data. However, we observe that they have major
robustness issues in real data, possibly due to imperfect calibra-
tion of the linear measurements. We believe the simplicity of
our algorithm is a strength in this setting even though it can be
enhanced with additional tricks, such as reshaping, truncation,
hybrid, and minibatch [53]–[55], which is beyond the scope of
this initial study.

As a result, we have established a different, but very strong
baseline for our comparisons: The first scalable convex opti-
mization approach [49], which none of the non-convex meth-
ods include. We show that convex method indeed outperforms
the other non-convex approaches in the literature in terms of
the solution quality (but certainly NOT speed!). However, our
new algorithm still outperforms the convex method, while being
similar in speed to other fast non-convex methods, such as the
Wirtinger flow [6].

In the FastText application, the spectral norm provides
state-of-the-art results with nearly orthogonal factors in the re-

spective space. We leave the interpretation of this result as future
work.
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