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Abstract Real-world data typically contain repeated
and periodic patterns. This suggests that they can be
effectively represented and compressed using only a
few coefficients of an appropriate basis (e.g., Fourier,
Wavelets, etc.). However, distance estimation when the
data are represented using different sets of coefficients
is still a largely unexplored area. This work studies the
optimization problems related to obtaining the tightest
lower/upper bound on Euclidean distances when each
data object is potentially compressed using a different
set of orthonormal coefficients. Our technique leads to
tighter distance estimates, which translates into more
accurate search, learning and mining operations di-
rectly in the compressed domain.

We formulate the problem of estimating
lower/upper distance bounds as an optimization
problem. We establish the properties of optimal
solutions, and leverage the theoretical analysis to
develop a fast algorithm to obtain an exact solution
to the problem. The suggested solution provides the
tightest estimation of the L2-norm or the correlation.
We show that typical data-analysis operations, such
as k-NN search or k-Means clustering, can operate
more accurately using the proposed compression and
distance reconstruction technique. We compare it
with many other prevalent compression and recon-
struction techniques, including random projections
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and PCA-based techniques. We highlight a surprising
result, namely that when the data are highly sparse
in some basis, our technique may even outperform
PCA-based compression.

The contributions of this work are generic as our
methodology is applicable to any sequential or high-
dimensional data as well as to any orthogonal data
transformation used for the underlying data compres-
sion scheme.

Keywords: Data Compression, Compressive Sensing,
Fourier, Wavelets, Water-filling algorithm, Convex
Optimization

1 Introduction

Increasing data sizes are a perennial problem for data
analysis. This dictates the need not only for more effi-
cient data-compression schemes, but also for analytic
operations that work directly in the compressed do-
main. Compression schemes exploit inherent patterns
and structures in the data. In fact, many natural and
industrial processes exhibit patterns and periodicities.
Periodic behavior is omnipresent; be it in environmen-
tal and natural processes [1,2], in medical and phys-
iological measurements (e.g., ECG data [3]), weblog
data [4,5], or network measurements [6]. The afore-
mentioned are only a few of the numerous scientific
and industrial fields that exhibit repetitions. Examples
from some of these areas are shown in Fig. 1.

When data contain an inherent structure, more ef-
ficient compression can be performed with minimal
loss in data quality (see Fig. 3 for an example). The
bulk of related work on compression and distance esti-
mation used the same sets of coefficients for all objects
[7–10]. This simplified the distance estimation in the
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Fig. 1: Many scientific fields entail periodic data. Ex-
amples from medical, industrial, web and astronomi-
cal measurements.

compressed domain. However, by encoding the data
using only a few and potentially disjoint sets of high-
energy coefficients (i.e., coefficients of highest absolute
value) in an orthonormal basis, one can achieve better
reconstruction performance. Nonetheless, it was not
known how to compute tight distance estimates using
such a representation. Our work exactly addresses this
issue: given data that are compressed using disjoint co-
efficient sets of an orthonormal basis (for reasons of
higher fidelity), how can distances among the compressed
objects be estimated with the highest fidelity?

Here, we provide the tightest possible upper and
lower bounds on the original distances, based only
on the compressed objects. By tightest, we mean that,
given the information available, no better estimate can
be derived. Distance estimation is fundamental for
data mining: the majority of mining and learning tasks
are distance-based, including clustering (e.g. k-Means
or hierarchical), k-NN classification, outlier detection,
pattern matching, etc. This work focuses on the case
where the distance is the widely used Euclidean dis-
tance (L2-norm), but makes no assertions on the un-
derlying transform used to compress the data: As long
as the transform is orthonormal, our methodology is
applicable. In the experimental section, we use both
Fourier and Wavelets Decomposition as a data com-
pression technique. Our main contributions are sum-
marized below:

- We formulate the problem of tight distance esti-
mation in the compressed domain as two optimization
problems for obtaining lower/upper bounds. We show
that both problems can be solved simultaneously by
solving a single convex optimization program.

- We derive the necessary and sufficient Karush-
Kuhn-Tucker (KKT) conditions and study the proper-

ties of optimal solutions. We use the analysis to devise
exact closed-form solution algorithms for the optimal
distance bounds.

- We evaluate our analytical findings experimen-
tally; we compare the proposed algorithms with preva-
lent distance estimation schemes, and demonstrate
significant improvements in terms of estimation accu-
racy. We further compare the performance of our opti-
mal algorithm with that of a numerical scheme based
on convex optimization, and show that our scheme is
at least two orders of magnitude faster, while also pro-
viding more accurate results.

- We also provide extensive evaluations with min-
ing tasks in the compressed domain using our ap-
proach and many other prevalent compression and
distance reconstruction schemes used in the literature
(random projections, SVD, etc).

2 Related Work

We briefly position our work in the context of other
similar approaches in the area. The majority of data-
compression techniques for sequential data use the
same set of low-energy coefficients whether using
Fourier [7,8], Wavelets [9,10] or Chebyshev polynomi-
als [13] as the orthogonal basis for representation and
compression. Using the same set of orthogonal coeffi-
cients has several advantages: a) it is straightforward
to compare the respective coefficients; b) space parti-
tioning and indexing structures (such as R-trees) can
be directly used on the compressed data; c) there is
no need to store also the indices (position) of the basis
functions to which the stored coefficients correspond.
The disadvantage is that both object reconstruction
and distance estimation may be far from optimal for
a given fixed compression ratio.

One can also record side information, such as the
energy of the discarded coefficients, to better approx-
imate the distance between compressed sequences by
leveraging the Cauchy–Schwartz inequality [14]. This
is shown in Figure 2a). In [12,11], the authors ad-
vocated the use of high-energy coefficients and side
information on the discarded coefficients for weblog
sequence repositories; in that setting one of the se-
quences was compressed, whereas the query was un-
compressed, i.e., all coefficients were available as illus-
trated in Figure 2b). This work examines the most gen-
eral and challenging case when both objects are com-
pressed. In such case, we record a (generally) different
set of high-energy coefficients and also store aggregate
side information, such as the energy of the omitted
data; this is depicted in Figure 2c). We are not aware
of any previous art addressing this problem to derive
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Fig. 2: Comparison with previous work. Distance estimation between a compressed sequence (X) and a query
(Q) represented in any complete orthonormal basis. A compressed sequence is represented by a set of stored
coefficients (gray) as well as the error e incurred because of compression (yellow). a) Both X,Q are compressed by
storing the first coefficients. b) The highest-energy coefficients are used for X, whereas Q is uncompressed as in
[11,12]. c) The problem we address: both sequences are compressed using the highest-energy coefficients; note
that in general for each object a different set of coefficients is used.

either optimal or suboptimal bounds on distance esti-
mation.

The above approaches consider determining dis-
tance estimation in the compressed domain. There is
also a big body of work that considers probabilistic
distance estimation via low-dimensional embeddings.
Several projection techniques for dimensionality re-
duction can preserve the geometry of the points [15,
16]. These results heavily depend on the work of John-
son and Lindenstrauss [17], according to which any
set of points can be projected onto a logarithmic (in
the cardinality of the data points) dimensional sub-
space, while still retaining the relative distances be-
tween the points, thus preserving an approximation of
their nearest neighbors [18,19] or clustering [20,21].
Both random [22] and deterministic [23] constructions
have been proposed in the literature.

This paper extends and expands the work of [24].
Here we include additional experiments that show
the performance of our methodology for k-NN-search,
and k-Means clustering directly in the compressed do-
main. We also compare our approach with the per-
formance of Principal Components and Random Pro-
jection techniques (both in the traditional and in the
compressive sensing setting). Finally, we also conduct
experiments using other orthonormal bases (namely,
wavelets) to demonstrate the generality of our tech-
nique. In the experimental section of this work, we
compare our methodology to both deterministic and
probabilistic techniques.

3 Searching Data Using Distance Estimates

We consider a databaseDB that stores sequences as
N -dimensional complex vectors x(i) ∈ CN , i = 1, . . . ,V .
A search problem that we examine is abstracted as fol-
lows: a user is interested in finding the k most ‘simi-
lar’ sequences to a given query sequence q ∈ DB, un-
der a certain distance metric d(·, ·) : CN×N → R+. This
is an elementary, yet fundamental operation known as
k-Nearest-Neighbor (k-NN)-search. It is a core func-
tion in database-querying, data-mining and machine-
learning algorithms including classification (NN clas-
sifier), clustering, etc.

In this paper, we focus on the case where d(·, ·)
is the Euclidean distance. We note that other mea-
sures, e.g., time-invariant matching, can be formu-
lated as Euclidean distance on the periodogram [25].
Correlation can also be expressed as an instance of
Euclidean distance on properly normalized sequences
[26]. Therefore, our approach is applicable on a wide
range of distance measures with little or no modifica-
tion. However, for ease of exposition, we focus on the
Euclidean distance as the most used measure in the lit-
erature [27].

Search operations can be quite costly, especially for
cases when the dimensionality N of data is high: se-
quences need to be retrieved from the disk for com-
parison against the query q. An effective way to mit-
igate this is to retain a compressed representation of
the sequences to be used as an initial pre-filtering
step. The set of compressed sequences could be small
enough to keep in-memory, hence enabling a signifi-
cant performance speedup. In essence, this is a mul-
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tilevel filtering mechanism. With only the compressed
sequences available, we obviously cannot infer the ex-
act distance between the query q and a sequence x(i)

in the database. However, it is still plausible to obtain
lower and upper bounds of the distance. Using these
bounds, one might request a superset of the k-NN an-
swers, which will be then verified using the uncom-
pressed sequences that will need to be fetched and
compared with the query, so that the exact distances
can be computed. Such filtering ideas are used in the
majority of the data-mining literature for speeding up
search operations [7,8,28].

4 Notation

Consider an N -dimensional sequence x =
[x1 x2 . . . xN ]T ∈ R

N . For compression purposes,
x is first transformed using a sparsity-inducing
(i.e., compressible) basis F (·) in R

N or C
N , such

that X = F (x). We denote the forward linear map-
ping x → X by F , whereas the inverse linear map
X → x is denoted by F −1, i.e., we say X = F (x) and
x = F −1(X). A nonexhaustive list of invertible linear
transformations includes Discrete Fourier Transform
(DFT), Discrete Cosine Transform, Discrete Wavelet
Transform, etc.

As a running example for this paper, we assume
that a sequence is compressed using DFT. In this case,
the basis represent sinusoids of different frequencies,
and the pair (x,X) satisfies

Xl =
1
√
N

N∑
k=1

xke
i2π(k−1)(l−1)/N , l = 1, . . . ,N

xk =
1
√
N

N∑
l=1

Xle
i2π(k−1)(l−1)/N , k = 1, . . . ,N

where i is the imaginary unit i2 = −1.
Given the above, we assume the L2-norm as the dis-

tance between two sequences x, q, which can easily be
translated into distance in the frequency domain be-
cause of Parseval’s theorem [29]:

d(x,q) := ||x−q||2 = ||X−Q||2

In the experimental section, we also show applica-
tions of our methodology when wavelets are used as
the signal decomposition transform.

5 Motivation

The choice of which coefficients to use has a direct im-
pact on the data approximation quality. It has long

been recognized that sequence approximation is in-
deed superior when using high-energy coefficients [30,
12]; in fact, using high-energy coefficients corresponds
to optimal L2 compression–as indicated by Parseval’s
theorem–hence, we also use the term ‘’best coeffi-
cients” to refer to the high-energy coefficients main-
tained during compression; see also Figure 3 for an il-
lustrative example - However, a barrier still has to be
overcome when using optimal l2 compression: the ef-
ficiency of solution for distance estimation.

Consider a sequence represented using its high-
energy coefficients. Then, the compressed sequence
will be described by a set of Cx coefficients that hold
the largest energy. We denote the vector describing the
positions of those coefficients in X as p+

x , and the posi-
tions of the remaining ones as p−x (that is, p+

x ∪ p−x =
{1, . . . ,N }). For any sequence X, we store the vector
X(p+

x ) in the database, which we denote simply by
X+ := {Xi}i∈p+

x
. We denote the vector of discarded co-

efficients by X− := {Xi}i∈p−x . In addition to the best co-
efficients of a sequence, we can also record one addi-
tional value for the energy of the compression error,
ex = ||X−||22, i.e., the sum of squared magnitudes of the
omitted coefficients.

Then, one needs to solve the following minimiza-
tion (maximization) problem for calculating the lower
(upper) bounds on the distance between two se-
quences based on their compressed versions:

min(max)
X−∈C|p−x |, Q−∈C|p

−
q |

||X−Q||2

s.t. |X−l | ≤min
j∈p+

x

|Xj |, ∀l ∈ p−x

|Q−l | ≤min
j∈p+

q

|Qj |, ∀l ∈ p−q∑
l∈p−x

|X−l |
2 = ex,

∑
l∈p−q

|Q−l |
2 = eq

(1)

The inequality constraints are due to the fact that we
use the high-energy components for the compression.
Hence, any of the omitted components must have an
energy lower than the minimum energy of any kept
component.

The optimization problem presented is a complex-
valued program: we show a single real-valued convex
program that is equivalent to both the minimization and
maximization problems. This program can be solved
efficiently with numerical methods [31], cf. Sec. 8.1.
However, as we show in the experimental section, eval-
uating an instance of this problem is not efficient in
practice, even for a single pair of sequences. There-
fore, although a solution can be found numerically,
it is generally costly and not suitable for large min-
ing tasks, where one would like to evaluate thousands
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Fig. 3: Motivation for using the high-energy (best) coefficients for compression. Using the best 10 coefficients (c)
results in significantly better sequence approximation than when using the first coefficients (b).

or millions of lower/upper bounds on compressed se-
quences.

In this paper, we show how to solve this problem
analytically by exploiting the derived optimality con-
ditions. In this manner we can solve the problem in
a fraction of the time required by numerical meth-
ods. We solve this problem as a ‘double-waterfilling’
instance. Vlachos et al. have shown how the opti-
mal lower and upper distance bounds between a com-
pressed and an uncompressed sequence can be rele-
gated to a single waterfilling problem [12]. We revisit
this approach as it will be used as a building block for
our solution. In addition, we later derive optimality
properties for our solution.

6 An Equivalent Convex Optimization Problem

For ease of notation, we consider the partition P =
{P0, P1, P2, P3} of {1, . . . ,N } (see Fig. 4), where we set the
following:

– P0 = p+
x ∩p+

q are the common known components in
two compressed sequences X,Q.

– P1 = p−x∩p+
q are the components unknown for X but

known for Q.
– P2 = p+

x ∩ p−q are the components known for X but
unknown for Q.

– P3 = p−x ∩p−q are the components unknown for both
sequences.

Using the standard notation x∗ for the conjugate
transpose of a complex vector x,<{·} to denote the real
part of a complex number, and considering all vectors
as column vectors, we have that the squared Euclidean

Q

X

Unknown (Discarded) Coefficient

Known (Kept) Coefficient

P0

P1

P2

P3 P0

P1

P2

P3P3 P3 P3P3

Fig. 4: Visual illustration of sets P0, P1, P2, P3 between
two compressed objects.

distance is given by:

||x−q||22 = ||X−Q||22 = (X−Q)∗(X−Q)

= ||X||22 + ||Q||22 − 2X∗Q

= ||X||22 + ||Q||22 − 4
N∑
i=1

<{XiQi}

= ||X||22 + ||Q||22 − 4(
∑
l∈P0

<{XlQl}

+
∑
l∈P1

<{XlQl}+
∑
l∈P2

<{XlQl}

+
∑
l∈P3

<{XlQl}).

Note that ||X||2 , ||Q||2 can be inferred by summing
the squared magnitudes of the known coefficients with
the energy of the compression error. Also, the term∑
l∈P0
<{XlQl} is known, whereas the last three sums

are unknown. Considering the polar form, i.e., abso-
lute value | · | and argument arg(·)

Xl = |Xl |eiarg(Xl ), Ql = |Ql |eiarg(Ql ),

we have that the decision variables are vectors
|Xl |,arg(Xl), l ∈ p−x as well as |Ql |,arg(Ql), l ∈ p−q . Ob-
serve that for x,y ∈ C with |x|, |y| known, we have that
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−|x||y| ≤ <{xy} ≤ |x||y|, where the upper bound is at-
tained when arg(x) + arg(y) = 0 and the lower bound
when arg(x) + arg(y) = π.

Therefore, both problems (1) boil down to the real-
valued optimization problem

min −
∑
l∈P1

albl −
∑
l∈P2

albl −
∑
l∈P3

albl (2)

s.t. 0 ≤ al ≤ A, ∀l ∈ p−x
0 ≤ bl ≤ B, ∀l ∈ p−q∑
l∈p−x

a2
l ≤ ex∑

l∈p−q

b2
l ≤ eq,

where al ,bl represent |Xl |, |Ql |, respectively, and A :=
minj∈p+

q
|Xj |,B := minj∈p+

q
|Qj |. Note also that we have

relaxed the equality constraints to inequality con-
straints as the objective function of (2) is decreasing
in all ai ,bi , so the optimum of (2) has to satisfy the re-
laxed inequality constraints with equality, because of
the elementary property that |p−x |A2 ≥ ex, |p−q |B2 ≥ eq.
Recall that in the first sum only {ai} are known and in
the second only {bi}, whereas in the third all variables
are unknown.

We have reduced the original problem to a single
optimization program, which, however, is not convex
unless p−x∩p−q = ∅. It is easy to check that the constraint
set is convex and compact; however, the bilinear func-
tion f (x,y) := xy is convex in each argument alone, but
not jointly. We consider the re-parametrization of the
decision variables zi = a2

i for i ∈ p−x , and yi = b2
i for

i ∈ p−q , we set Z := A2,Y := B2 and get the equivalent
problem:

min −
∑
i∈P1

bi
√
zi −

∑
i∈P2

ai
√
yi −

∑
i∈P3

√
zi
√
yi (3)

s.t. 0 ≤ zi ≤ Z, ∀i ∈ p−x
0 ≤ yi ≤ Y , ∀i ∈ p−q∑
i∈p−x

zi ≤ ex∑
i∈p−q

yi ≤ eq .

The necessary and sufficient conditions on opti-
mality are presented in appendix 12.1.

Optimal lower/upper bounds: Let us denote the op-
timal value of (3) by vopt ≤ 0. Then the optimal lower
bound (LB) and upper bound (UB) for the distance es-

timation problem under consideration are given by

LB =
√
D̂ + 4vopt (4)

UB =
√
D̂ − 4vopt (5)

D̂ := ||X ||22 + ||Q||22 − 4
∑
l∈P0

<{XlQl} .

Remark 1 Interestingly, the widely used convex solver
cvx [32] cannot directly address (3)–the issue is that it
fails to recognize convexity of the objective functions.
For a numerical solution, we consider solving a relaxed
version of the minimization problem (1), where equal-
ity constraints are replaced by ≤ inequalities. We note
that this problem is not equivalent to (1), but still pro-
vides a viable lower bound. An upper bound can be
obtained by (cf. (4), (5)):

UB =
√

2D̂ −LB2.

We test the tightness of such approach in the experi-
mental section 10.

7 Exact Solutions

In this section, we study algorithms for obtaining ex-
act solutions for the optimization problem (3). By ex-
act, we mean that the optimal value is obtained in a
finite number of computations as opposed to when us-
ing a numerical scheme for convex optimization. In
the latter case, an approximate solution is obtained
by means of an iterative scheme which converges with
finite precision. Before addressing the general prob-
lem, we briefly recap a special case that was dealt with
in [12], where the sequence Q was assumed to be un-
compressed. In this case, an exact solution is provided
via the waterfilling algorithm, which constitutes a key
building block for obtaining exact solutions to the gen-
eral problem later on. We then proceed to study the
properties of optimal solutions; our theoretical analy-
sis gives rise to an exact algorithm, cf. Sec. 8.2.

7.1 Waterfilling Algorithm.

The case that Q is uncompressed is a special instance
of our problem with p−q = ∅, whence also P2 = P3 = ∅.
The problem is strictly convex, and (A-2d) yields

zi =
( bi
λ+αi

)2
⇔ ai =

bi
λ+αi

(6)

In such a case, the strict convexity guarantees the ex-
istence of a unique solution satisfying the KKT con-
ditions as given by the waterfilling algorithm, cf. Fig.
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5. The algorithm progressively increases the unknown
coefficients ai until saturation, i.e., until they reach A,
in which case they are fixed. The set C is the set of non
saturated coefficients at the beginning of each itera-
tion, whereas R denotes the “energy reserve,” i.e., the
energy that can be used to increase the non saturated
coefficients; vopt denotes the optimal value.

Waterfilling algorithm
Inputs: {bi }i∈p−x , ex ,A
Outputs: {ai }i∈p−x ,λ, {αi }i∈p−x ,vopt,R

1. Set R = ex , C = p−x
2. while R > 0 and C , ∅ do

3. set λ =
√∑

i∈C b
2
i

R , ai = bi
λ , i ∈ C

4. if for some i ∈ C, ai > A then
5. ai = A, C← C − {i}
6. else break;
7. end if
8. R = ex − (|p−x | − |C|)A2

9. end while
10. Set vopt = −

∑
i∈p−x aibi and

αi =
{

0, if ai < A
bi
A −λ, if ai = A

Fig. 5: Waterfilling algorithm for optimal distance es-
timation between a compressed and an uncompressed
sequence

As a shorthand notation, we write a =
waterfill(b, ex,A). Note that in this case the prob-
lem (2) for P2 = P3 = ∅ is convex, so the solution can
be obtained via the KKT conditions to (2), which
are different from those for the re-parameterized
problem (3); this was done in [12]. The analysis and
straightforward extensions are summarized in Lemma
1.

Lemma 1 (Exact solutions)

1. If either p−x = ∅ or p−q = ∅ (i.e., when at least one of
the sequences is uncompressed) we can obtain an ex-
act solution to the optimization problem (2) via the
waterfilling algorithm.

2. If P3 = p−x ∩ p−q = ∅, i.e., when the two compressed
sequences do not have any common unknown coeffi-
cients, the problem is decoupled in a,b, and the water-
filling algorithm can be used separately to obtain exact
solutions to both unknown vectors.

3. If P1 = P2 = ∅, i.e., when both compressed sequences
have the same discarded coefficients, the optimal value
is simply equal to −√ex

√
eq, but there is no unique so-

lution for a,b.

Proof The first two cases are obvious. For the
third one, note that it follows immediately from
the Cauchy–Schwartz inequality that −

∑
l∈P3

albl ≥
−√ex

√
eq, and in this is case this is also attainable. Just

consider for example, al =
√

ex
|P3 |
,bl =

√
eq
|P3 |

, which is

feasible because |p−x |A2 ≥ ex, |p−q |B2 ≥ eq, as follows by
compression with the high-energy coefficients. �

We have shown how to obtain exact optimal solu-
tions for special cases. To derive efficient algorithms
for the general case, we first study and establish some
properties of the optimal solution of (3).

Theorem 1 (Properties of optimal solutions)
Let an augmented optimal solution of (2) be denoted by
(aopt,bopt); where aopt := {aopt

i }i∈p−x∪p−q denotes the optimal
solution extended to include the known values |Xl |l∈P2

,
and bopt := {bopt

i }i∈p−x∪p−q denotes the optimal solution ex-
tended to include the known values |Ql |l∈P1

. Let us further
define e′x = ex −

∑
l∈P1

a2
l , e
′
q = eq −

∑
l∈P2

b2
l . We then have

the following:

1. The optimal solution satisfies1

aopt = waterfill (bopt, ex,A), (7a)

bopt = waterfill (aopt, eq,B). (7b)

In particular, it follows that aopt
i > 0 iff bopt

i > 0 and
that {aopt

i }, {b
opt
i } have the same ordering. In addition,

minl∈P1
al ≥maxl∈P3

al ,minl∈P2
bl ≥maxl∈P3

bl .
2. If at optimality it holds that e′xe

′
q > 0 there exists

a multitude of solutions. One solution (a,b) satisfies

al =
√

e′x
|P3 |
,bl =

√
e′q
|P3 |

for all l ∈ P3, whence

λ =

√
e′q
e′x

µ =

√
e′x
e′q
, (8a)

αi = βi = 0 ∀i ∈ P3. (8b)

In particular, λµ = 1 and the values e′x, e
′
q need to be

solutions to the following set of nonlinear equations:∑
l∈P1

min
(
b2
l
e′x
e′q
,A2

)
= ex − e′x, (9a)

∑
l∈P2

min
(
a2
l

e′q
e′x
,B2

)
= eq − e′q. (9b)

3. At optimality, it is not possible to have e′xe
′
q = 0 unless

e′x = e′q = 0.

1 This has a natural interpretation as the Nash equilibrium of
a 2-player game [33] in which Player 1 seeks to minimize the
objective of (3) with respect to z, and Player 2 seeks to minimize
the same objective with respect to y.
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4. Consider the vectors a,b with al = |Xl |, l ∈ P2, al =
|Xl |, l ∈ P1 and

{al}l∈P1
= waterfill ({bl}l∈P1

, ex,A), (10a)

{bl}l∈P2
= waterfill ({al}l∈P2

, eq,B). (10b)

If ex ≤ |P1|A2 and eq ≤ |P2|B2, whence e′x = e′q = 0, then
by defining al = bl = 0 for l ∈ P3, we obtain a globally
optimal solution (a,b).

Proof See appendix 12.2.

Remark 2 One may be tempted to think that an op-
timal solution can be derived by waterfilling for the
coefficients of {al}l∈P1

, {bl}l∈P2
separately, and then allo-

cating the remaining energies e′x, e
′
q to the coefficients

in {al ,bl}l∈P3
leveraging the Cauchy–Schwartz inequal-

ity, the value being −
√
e′x

√
e′q. However, the third and

fourth parts of Theorem 1 state that this is not optimal
unless e′x = e′q = 0.

We have shown that there are two possible cases for
an optimal solution of (2): either e′x = e′q = 0 or e′x, e

′
q >

0. The first case is easy to identify by checking whether
(10) yields e′x = e′q = 0. If this is not the case, we are in
the latter case and need to find a solution to the set of
nonlinear equations (9).

Consider the mapping T : R2
+→R

2
+ defined by

T ((x1,x2)) :=
(
ex −

∑
l∈P1

min
(
b2
l
x1

x2
,A2

)
, eq −

∑
l∈P2

min
(
a2
l
x2

x1
,B2

))
(11)

The set of nonlinear equations of (9) corresponds to a
positive fixed point of T , i.e., (e′x, e

′
q) = T (e′x, e

′
q), e

′
x, e
′
q >

0. Calculating a fixed point of T may at first seem in-
volved, but it turns out that this can be accomplished
exactly and with minimal overhead. The analysis can
be found in appendix 12.3, where we prove that this
problem is no different from the simplest numerical
problem: finding the root of a scalar linear equation.

Remark 3 We note that coefficients {al}P2
, {bl}P1

are
already sorted because of the way we perform
compression–by storing high-energy coefficients. It is
plain to check that all other operations can be effi-
ciently implemented, with the average complexity be-
ing linear (Θ(N ))–hence the term minimum-overhead
algorithm.

Remark 4 (Extensions) It is straightforward to see that
our approach can be applied without modification to
the case that each point is compressed using a different
number of coefficients. Additionally, we note here two
important extensions of our problem formulation and
optimal algorithm.

1. Consider the case that a data point is a countably in-
finite sequence. For example, we may express a con-
tinuous function via its Fourier series, or Cheby-
shev polynomials expansion. In that case, surpris-
ingly enough, our algorithm can be applied with-
out any alteration. This is because P0, P1, P2 are fi-
nite sets as defined above, whereas P3 is now infi-
nite. The energy allocation in P3 can be computed
exactly by the same procedure (cf. appendix 12.3)
and then in P3 the Cauchy–Schwartz inequality is
again applied2.

2. Of particular interest is the case that data are com-
pressed using an over-complete basis (also known
as frame in the signal-processing literature [29]);
this approach has recently become popular in the
compressed-sensing framework [34]. Our method
can be extended to handle this important gen-
eral case, by storing the compression errors corre-
sponding to each given basis, and calculating the
lower/upper bounds in each one separately using
our approach. We leave this direction for future re-
search work.

8 Algorithm for Optimal Distance Estimation

In this section, we present an algorithm for obtain-
ing the exact optimal upper and lower bounds on the
distance between the original sequences, when fully
leveraging all information available given their com-
pressed counterparts. First, we present a simple nu-
merical scheme using a convex solver such as cvx [32]
and then use our theoretical findings to derive an ana-
lytical algorithm which we call ‘double-waterfilling’.

8.1 Convex Programming

We let M := N − |P0|, and consider the nontrivial case
M > 0. Following the discussion in Sec. 6, we set the
2M ×1 vector v = ({al}l∈P1∪P2∪P3

, {bl}l∈P1∪P2∪P3
) and con-

sider the following convex problem directly amenable
to a numerical solution via a solver such as cvx:

min
∑
l∈P1∪P2∪P3

(al − bl)2

s.t. al ≤ A, ∀l ∈ p−x , bl ≤ B, ∀l ∈ p−q∑
l∈p−x a

2
l ≤ ex,

∑
l∈p−q b

2
l ≤ eq

al = |Xl |, ∀l ∈ P2, bl = |Ql |, ∀l ∈ P1

2 The proof of optimality in this case assumes a finite subset
of P3 and applies the same conditions of optimality that were
leveraged before; in fact particular selection of the subset is not
of importance, as long as its cardinality is large enough to ac-
commodate the computed energy allocation (e′x , e

′
q).
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The lower bound (LB) can be obtained by adding D ′ :=∑
l∈P0
|Xl −Ql |2 to the optimal value of (1) and taking

the square root; then the upper bound is given byUB =√
2D ′ −LB2, cf. (4).

Double-waterfilling algorithm
Inputs: {bi }i∈P1

, {ai }i∈P2
, ex , eq ,A,B

Outputs: {ai ,αi }i∈p−x , {bi ,βi }i∈p−q ,λ,µ,vopt
1. if p−x ∩p−q = ∅ then use waterfilling algorithm (see Lemma

1 parts 1,2); return; endif

2. if p−x = p−q then set al =
√

ex
|P3 |
,bl =

√
eq
|P3 |

, αl = βl = 0 for all

l ∈ p−x , vopt = −√ex
√
eq; return; endif

3. if ex ≤ |P1|A2 and eq ≤ |P2|B2 then

{al }l∈P1
= waterfill ({bl }l∈P1

, ex ,A)

{bl }l∈P2
= waterfill ({al }l∈P2

, eq ,B)

with optimal values v(a)
opt,v

(b)
opt, respectively.

4. Set al = bl = αl = βl = 0 for all l ∈ P3, vopt = −v(a)
opt −

v
(b)
opt; return;

5. endif
6. Calculate the root γ̄ as in Remark 5 (appendix 12.3) and

define e′x , e
′
q as in (A-8).

7. Set

{al }l∈P1
= waterfill ({bl }l∈P1

, ex − e′x ,A)

{bl }l∈P2
= waterfill ({al }l∈P2

, eq − e′q ,B)

with optimal values v(a)
opt ,v

(b)
opt , respectively.

8. Set al =
√

e′x
|P3 |
,bl =

√
e′q
|P3 |
,αl = βl = 0, l ∈ P3 and set vopt =

−v(a)
opt − v

(b)
opt −

√
e′x

√
e′q

Fig. 6: Double-waterfilling algorithm for optimal dis-
tance estimation between two compressed sequences.

8.2 Double-waterfilling

Leveraging our theoretical analysis, we derive a simple
efficient algorithm to obtain an exact solution to the
problem of finding tight lower/upper bound on the
distance of two compressed sequences; we call this the
“double-waterfilling algorithm.” The idea is to obtain
an exact solution of (2) based on the results of Theo-
rems 1, 2, and Remark 5; then the lower/upper bounds
are given by (4), (5). The algorithm is described in Fig.
6; its proof of optimality follows immediately from the
preceding theoretical analysis.

9 Mining in the compressed domain

In the experimental section, we will demonstrate the
performance of our methodology when operating di-

rectly in the compressed domain for distance-based
operations. We will use two common search and min-
ing tasks to showcase our methodology: (i) the k-NN
search and (ii) the k-Means clustering. Performing
such operations in the compressed domain may re-
quire modifications in the original algorithms, because
of the uncertainty introduced in the distance estima-
tion in the compressed domain. We discuss these mod-
ifications in the sections that follow. We also elaborate
on previous state-of-art approaches.

9.1 k-NN search in the compressed domain

Finding the closest points to a given query point is
an elementary subroutine to many problems in search,
classification, and prediction. A brute-force approach
via exhaustive search on the uncompressed data can
incur a prohibitive cost [22]. Thus, the capability to
work directly in a compressed domain provides a very
practical advantage to any algorithm.

In this context, the k-NN problem [35] in the com-
pressed domain can be succinctly described as:

k-NN Problem: Given a compressed query representation
YQ and k ∈Z+, find the k closest elements X(i) ∈ DB with
respect to the `2-norm through their compressed represen-
tations Y(i).

Various diverse approaches exist to tackle this
problem efficiently and robustly; cf., [36]. Here, we
compare our methodology with two algorithmic ap-
proaches of k-NN search in a low-dimensional space:
(i) Randomized projection-based k-NN and (ii) PCA-
based k-NN. We describe these approaches in more de-
tail.

Approximate k-NN using Randomized Projections (RP):
One of the most established approaches for low-
dimensional data processing is through the Johnson
Lindenstrauss (JL) Lemma3:

Lemma 2 (JL Lemma) Let X = {X(1), . . . ,X(V )} be any
arbitrary collection of V points in N dimensions. For an
isometry constant ε ∈ (0,1), we can construct with high

3 While JL Lemma applies for any set of points {X(1), . . . ,X(V )}
in high dimensions, more can be achieved if sparse representa-
tions of X(i),∀i, are known to exist a priori. Compressive sens-
ing (CS) [37] [34] roughly states that a sparse signal, compared
with its ambient dimension, can be perfectly reconstructed from
far fewer samples than dictated by the well-known Nyquist–
Shannon theorem. To this extent, CS theory exploits the spar-
sity to extend the JL Lemma to more general signal classes, not
restricted to a collection of points X . As a by-product of this
extension, the CS version of the JL Lemma constitutes the Re-
stricted Isometry Property (RIP).
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Algorithm 1 RP-based approximate k-NN algorithm

Input: k ∈Z+, Q, ε ∈ (0,1) . k: # of Nearest Neighbors, Q: the transformed uncompressed query
X with the transformed elements X(i) = F (x(i)).

1: Select appropriate d = O(ε−2 log(V ))
2: Construct Φ ∈Rd×N where Φij is i.i.d. ∼N (0, 1√

d
) or ∼ Ber{± 1√

d
} or according to (12).

3: for each X(i) ∈ X do (Pre-processing step)
4: Compute Y(i) = ΦX(i) ∈Cd
5: end for

6: Compute YQ = ΦQ ∈Cd .
7: for each Y(i) do (Real-time execution step)
8: Compute ‖YQ −Y(i)‖2
9: end for

10: Sort and keep the k-closest Y(i)’s, in the `2-norm sense.

probability a linear mapping Φ : CN → C
d , where d =

O(ε−2 log(V )), such that

(1− ε) ≤
‖Φ(X(i))−Φ(X(j))‖22
‖X(i) −X(j)‖22

≤ (1 + ε)

for all X(i),X(j) ∈ X .

Therefore, instead of working in the ambient space of
N dimensions, we can construct a linear, nearly isomet-
ric map Φ that projects the data onto a lower subspace,
approximately preserving their relative distances in the
Euclidean sense. Variants of this approach have also
been proposed in [38]. As we are not interested in re-
covering the entries of X(i) in the d-dimensional space,
rather than just performing data manipulations in this
domain, one can control the distortion ε so that tasks
such as classification and clustering can be performed
quite accurately with low computational cost. How-
ever, we underline that the JL guarantees are proba-
bilistic and asymptotic, whereas the lower and upper
bounds provided by our technique cannot be violated.

The topic of constructing matrices Φ that satisfy
the JL Lemma with nice properties (e.g., determin-
istic construction, low space-complexity for storage,
cheap operations using Φ) is still an open question,
although many approaches have been proposed. Sim-
ilar questions also appear under the tag of locality-
sensitive hashing, where sketching matrices “sense” the
signal under consideration. Fortunately, many works
have proved the existence of random universal matrix
ensembles that satisfy the JL Lemma with overwhelm-
ing probability, thus ignoring the deterministic con-
struction property.4 Representative examples include

4 Recent developments [39] describe deterministic construc-
tions of Φ in polynomial time, based on the fact that the data
X is known a priori and fixed. The authors in [39] propose
the NuMax algorithm, a SemiDefinite Programming (SDP) solver
for convex nuclear norm minimization over `∞-norm and pos-

random Gaussian matrices [40] and random binary
(Bernoulli) matrices [41][22]. Ailon and Chazelle [19]
propose a fast JL transform for the k-NN problem with
faster execution time than its predecessors. Achlioptas
[22] proposes a randomized construction for Φ , both
simple and fast, which is suitable for standard SQL-
based database environments; each entry Φij indepen-
dently takes one of the following values:

Φij =


1 with probability 1

6 ,

0 with probability 2
3 ,

−1 with probability 1
6 .

(12)

This has the additional advantage of producing a
sparse transformation matrix Φ which results in com-
putation savings at the data-compression step.

In our experiments, we shall refer to the Gaus-
sian distributed projection matrix as GRP, the Bernoulli
distributed projection matrix as BRP and Achlioptas’
construction ARP. We omit sophisticated constructions
of Φ because of their increased implementation com-
plexity.

Using linear maps Φ ∈ R
d×N or Φ ∈ C

d×N satis-
fying the JL Lemma, one can compress X(i) as Y(i) =
ΦX(i) ∈ C

d and store only Y(i) for further process-
ing. Given a compressed representation of a query Q,
YQ = ΦQ, one can compute the distances of each Y(i)

to YQ and pick the k nearest points in the Euclidean
sense. We provide a pseudo-code description of the
above in Algorithm 1.

Overall, Algorithm 1 requires O(ε−2VN log(V ))
time to preprocess the entries of DB and O(ε−2(V +
N ) log(V )) double-sized space-complexity, in the

itive semidefinite constraints. However, NuMax has O(C +N3 +
N2C2) time-complexity per iteration and overall O(C2) space-
complexity, where C :=

(V
2
)
; this renders NuMax prohibitive for

real-time applications. Such an approach is not included in our
experiments, but we mention it here for completeness.
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Gaussian case. In the other two cases, the space com-
plexity can be further reduced thanks to the binary
representation of Φ . Given a query YQ, Algorithm 1
requires O(max{V ,N } · ε−2 log(V )) time-cost.

Approximate k-Nearest Neighbors using PCA: Instead of
projecting onto a randomly chosen low-dimensional
subspace, one can use the most informative sub-
spaces to construct a projection matrix, based on X .
PCA-based k-NN relies on this principle: let X :=
[X(1) X(2) . . . X(V )] ∈ CN×n be the data matrix. Given
X, one can compute the Singular Value Decomposi-
tion (SVD) X = UΣVT to identify the d most important
subspaces of X, spanned by the d dominant singular
vectors in U. In this case, Φ := U(1 : d, :) works as a
low-dimensional linear map, biased by the informa-
tion contained in X.

The main shortcoming of PCA-based k-NN search
is the computation of the SVD of X; generally, such an
operation has cubic complexity in the number of en-
tries in X. Moreover, PCA-based projection provides
no guarantees on the order of distortion in the com-
pressed domain: While in most cases Φ := U(1 : d, :)
outperforms RP-based approaches with JL guarantees,
one can construct test cases where the pairwise point
distances are heavily distorted such that points in X
might be mapped to a single point [22] [39]. Finally,
note that computation of the SVD requires the pres-
ence of the entire dataset, whereas approaches such as
ours operate on a per-object basis.

Optimal bounds-based k-NN: Our approach can easily
be adapted to perform k-NN search operations in the
compressed domain. Similar to Algorithm 1, instead of
computing random projection matrices, we keep the
high-energy coefficients for each transformed signal
representation X(i) (in Fourier, Wavelet or other basis)
and also record the total discarded energy per object.
Following a similar approach to compress the input
query Q, say YQ, we perform the optimal bounds pro-
cedure to obtain upper (ub) and lower bounds (`b) of
the distance in the original domain. Therefore, we do
not have only one distance, but can compute three dis-
tance proxies based on the upper and lower bounds on
the distance:

(i) We use the lower bound `b as indicator of how
close the uncompressed x(i) is to the uncompressed
query q.

(ii) We use the upper bound ub as indicator of how
close the uncompressed x(i) is to the uncompressed
query q.

(iii) We define the average metric `b+ub
2 as indicator of

how close the uncompressed x(i) is to the uncom-
pressed query q.

In the experimental section, we evaluate the per-
formance of these three metrics, and show that the last
metric based on the average distance bound provides
the most robust performance.

9.2 k-Means clustering in the compressed domain

Clustering is a rudimentary mining task for summa-
rizing and visualizing large amounts of data. Specifi-
cally, the k-clustering problem is defined as follows:

k-Clustering Problem: Given a DB containing V com-
pressed representations of x(i),∀i, and a target number of
clusters k, group the compressed data into k clusters in an
accurate way through their compressed representations.

This is an assignment problem and is in fact NP-
hard [42]. Many approximations to this problem ex-
ist, one of the most widely-used algorithms being the
k-Means clustering algorith [43]. Formally, k-Means
clustering involves partitioning the V vectors into k
clusters, i.e., into k disjoint subsets G(t) (1≤t≤k) with
∪tG(t) = V , such that the sum of intraclass variances

V :=
k∑
t=1

∑
x(i)∈G(t)

||x(i) −C(t)||2, (13)

is minimized, whereC(t) is the centroid of the k-th clus-
ter.
There also exist other formalizations for data clus-
tering, based on either hierarchical clustering (“top-
down” and “bottom-up” constructions, cf. [44]); flat or
centroid-based clustering, or on spectral-based clus-
tering [45]. In our subsequent discussions, we focus
on the k-Means algorithm because of its widespread
use and fast runtime. Note also that k-Means is eas-
ily amenable for use by our methodology owning to
its computation of distances between objects and the
derived centroids.

Similar to the k-NN problem case, we consider
low-dimensional embedding matrices based on both
PCA and randomized constructions [46][15] [20]. We
note that [20] theoretically proves that a specific ran-
dom matrix construction achieves a (2 + ε)-optimal
k-partition of the points in the compressed domain
in O(VN k

ε2 log(N ) ) time. Based on simulated annealing

clustering heuristics, [21] proposes an iterative pro-
cedure where sequential k-means clustering is per-
formed, with increasing projection dimensions d, for
better clustering performance. We refer the reader to
[20] for a recent discussion of the above approaches.

Similar, in spirit, to our approach is the work of
[42]. There, the authors propose 1-bit Minimum Mean
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Algorithm 2 Optimal bounds-based k-Means

Input: k ∈Z+, Y = {Y(1), . . . ,Y(V )} . k: # of clusters, Y(i): Compressed data vectors.

1: Select randomly k centroids C(t), t = 1, . . . , k, in the compresed domain. (Initialization step)

2: while Y(i) assignment to C(t) changes do
3: Compute optimal lower `b and upper ub bounds between each Y(i) and C(t), ∀i, t.
4: For each pair Y(i),C(t) calculate a distance metric mi,t , based on `b and ub.
5: Assign Y(i)’s to groups G(t) such that: G(t) =

{
Y(i) | mi,t ≤mi,q ,∀q , t

}
. (Assignment step)

6: Update the centroids: C(t) = 1
|G(t) |

∑
Y(i)∈G(t) Y(i). (Update step)

7: end while

Square Error (MMSE) quantizers per dimension and
cluster, and provide guarantees for cluster preserva-
tion in the compressed domain.

Optimal bounds-based k-Means: To describe how to
use our proposed bounds in a k-clustering task, let
G(t), t = 1, . . . , k, be the k groups of a partition with cen-
troids C(t), t = 1, . . . , k. We use a modification of Lloyd’s
algorithm [43] which consists of the following steps:

Assignment step: Let C(t), t = 1, . . . , k, be the current
centroids.5 For each compressed sequence Y(i) ∈ DB,
we compute the corresponding upper ub and lower `b
bounds with respect to every centroid C(t). We use a
distance metric mi,t , based on ub and `b to decide the
assignment of each Y(i) to one of the centroids, i.e.,

G(t) =
{
Y(i) | mi,t ≤mi,q,∀q , t

}
.

Here, we use mi,t = ub+`b
2 where ub, `b denote the

upper- and lower-bounds between the compressed se-
quence Y(i) and the centroid C(t); other distance met-
rics can be used depending on the nature and the re-
quirements of the problem at hand.

Update step: To update the centroids C(t), we use the
average rule using the current distribution of points at
each cluster, i.e.,

C(t) =
1
|G(t)|

∑
Y(i)∈G(t)

Y(i).

Distance to new centroids: Recall that each of the com-
pressed objects has information only about its high-
energy coefficients. This set of coefficients may be dif-
ferent across objects. So, during the above averaging
operation for computing the centroids, we may end up
with the new centroids having (potentially) all coeffi-
cient positions filled with some energy. However, this

5 For centroid initialization, one can choose C(t) to be (i) com-
pletely random points in the compressed domain; (ii) set ran-
domly to one of the compressed representations of X(i) ∈ DB,
or (iii) use the better performing k-Means++ initialization algo-
rithm [47,42].

does not pose a problem for the distance computation
because the waterfilling algorithm can compute dis-
tance estimates even between compressed sequences
with different number of coefficients. Therefore, we
exploit all information available in the computed cen-
troid, as this does not increase the space complexity
of our technique. Alternatively, one could keep only
the top high-energy coefficients for the new centroid.
However, there is no need to discard this extra infor-
mation.
The above steps are summarized in Algorithm 2.

10 Experiments

Here we conduct a range of experiments to showcase
a) the tightness of bounds that we calculate; b) the low
runtime to compute those bounds and, c) the compar-
ative quality of various mining tasks when using the
optimal distance estimates.

Our intention in the experimental section is not to
focus on a specific application, rather to evaluate dif-
ferent methodologies under implementation invariant
settings. This makes the contribution of our work for
compression and search more generic and fundamen-
tal.

Datasets: We use two datasets: (i) a weblog time-series
dataset and (ii) an image dataset consisting of Very
Large Scale Integration (VLSI) layouts.

The weblog dataset consists of approximately 2.2
million data values, distilled from past logs of the
IBM.com search page. We created time-series by as-
sembling how many times important keywords were
entered at the search page. We constructed 2,150 time-
series x(i) ∈ R1024, corresponding to an equal number
of text queries. Each time-series object captures how
many times a particular text query was posed for 1024
consecutive days. We transform the data into a com-
pressible form: for each x(i), we compute its Fourier
representation X(i) ∈CN .
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Fig. 7: Comparison of lower and upper bounds for distances for various compression approaches. Distances
are shown normalized with respect to the original distance (black vertical line) on the uncompressed data. The
red vertical line indicates the bound given the PCA-based approach, which uses all the dataset to compute the
appropriate basis.

The second dataset considers images consisting of
patterns from a database of VLSI layouts. The dataset
is comprised of ∼ 150,000 images of size 512x512. To
support translation-invariant matching from each im-
age, we extract a signature x(i) ∈R512. We describe this
process in more detail later. Finally, we represent the
resulting signature using the high-energy wavelet co-
efficients as basis. Detailed information on this appli-
cation will be provided later on.

We take special care to perform a fair comparison
of all techniques. For our approach, per compressed
object we need to store the following: (i) the values
X(p+

x ) of each high-energy coefficient, as s double com-
plex values for the Fourier case (16 bytes each) and
s double values for the Wavelet case (8 bytes each);
(ii) The positions p+

x of the high-energy coefficients,
as s integer values (4 bytes each) and, (iii) the to-
tal remaining energy ex of the discarded coefficients,
which can be represented with one double variable
(8 bytes). Overall, our approach allocates space for
r =

⌈
2s+ s

2 + 1
⌉

double values for the Fourier case and

r =
⌈
s+ s

4 + 1
2

⌉
double values for the Wavelet case. We

make sure that all approaches use the same space. So,
methods that do not require recording of the explicit
position of a coefficient, in essence, use more coeffi-
cients than our technique.

10.1 Tightness of bounds and time complexity

First, we illustrate how tight the bounds computed by
both (i) deterministic and (ii) probabilistic approaches
are.

Deterministic approaches: We consider the following
schemes:

(i) First Coeffs.: this scheme only exploits the first s
coefficients of each Fourier-transformed X(i) to suc-
cinctly represent the uncompressed data x(i). No
further computation is performed.

(ii) Best Coeffs.: this scheme only exploits the best s
coefficients (in magnitude sense) of each Fourier-
transformed X(i) to succinctly represent the un-
compressed data x(i). Similarly to (i), no further
computation is performed.

(iii) PCA-based. This technique uses the PCA-based di-
mensionality reduction approach. Note that this
approach requires as input the complete data, and
not each object separately. Given the complete
dataset, one can compute its SVD to extract the
most dominant subspaces that explain the most
variance in the data. To achieve dimensionality re-
duction, one projects the time-series vectors onto
the best d-dimensional subspace by multiplying
the data points with the set of d dominant left sin-
gular vectors.

(iv) Optimal bounds - Numerical: Here, we use off-
the-shelf convex solvers to numerically solve
problem (1) through second-order optimization
schemes. Numerical approaches are not exact and
the minimizer lies within a predefined numerical
tolerance ε. In our experimental setup, we use the
well established CVX library where (1) is solved
with tolerance ε = 10−8.

(v) Optimal bounds: our approach in which the upper
and lower bounds on the distance are solved using
the closed-form waterfilling ideas described.
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Fig. 8: Comparison of lower and upper bounds for the RP-based approach with the PCA-based and optimal
bounds approaches. Top row: dense case; Bottom row: sparse case. All bounds are shown normalized with respect
to the original distance (black vertical line) on the uncompressed data. The average PCA-based distance over all
pairwise distances is denoted by a vertical red line.

To provide a fair comparison, all approaches use the
same amount of space per compressed object for all
experiments.

Probabilistic approaches: Here, any estimation of dis-
tances in the original data space holds only in prob-
ability and in the asymptotic sense. The performance
recorded represents only an average behavior; i.e., we
can always construct adversarial cases where these
schemes perform poorly for a fixed projection matrix.

(i) RP-based approach: in this case, we randomly
generate GRP/BRP/ARP d-dimensional mappings Φ .
As this approach is probabilistic, we perform 103

Monte Carlo iterations to independently generate
Φ ’s and implicitly extract an approximate range of
lower and upper bounds.

Quality of approximation: Using the weblog time-series
data, Figure 7 illustrates the results for various com-
pression ratios (i.e. number of coefficients used). Us-
ing the Optimal bounds scheme, we can achieve up to
27% tighter bounds. The Optimal bounds - Numeri-

cal approach provides marginally worse results and
has a very high computational cost.

The comparsion with probabilistic approaches
based on Random Projections is shown in Figure 8
(top row). Among the RP-based approaches, the GRP

matrices on average attain the best approximation of

the original distance. We should highlight, though,
that our approach computes nontrivial bounds for any
pair of compressed sequences, in contrast to RP-based
schemes, where the guarantees hold in probability.

Furthermore, to measure the efficiency and robust-
ness of our approach when the data is naturally sparse
in some basis, i.e., most of the entries inN -dimensions
are zero, we synthetically “sparsify” the weblog data:
given each uncompressed sequence X(i), we assume
that X(i) is perfectly represented by using only 3s
Fourier coefficients, where s = {16,32,64}; i.e., we sub-
sample the signal such that only 3s among N coeffi-
cients are nonzero. Then, we keep s coefficients. Fig-
ure 8 (bottom row) illustrates the performance of our
approach as compared to RP-based and PCA-based ap-
proaches. As the data under consideration are sparse,
ex and eq estimates are tighter, providing better upper
and lower bounds than in the non-sparse case (see Fig-
ure 8, top row).

Running time: The time complexity of each ap-
proach under comparison is given in Figure 9. The
graph reports the average running time (in msec)
for computing the distance estimates between one
pair of sequences. It is evident that the proposed an-
alytical solution based on double-waterfilling is at
least two orders of magnitude faster than the numer-
ical approach. More importantly, the optimal solu-
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Fig. 9: Runtime of various techniques to compute a distance estimate for one pair of objects.

tion through waterfilling is not computationally bur-
dening: competing approaches require 1-2 msec for
computation, whereas the waterfilling approach re-
quires around 2.5 msec. The small additional time is
attributed to the fact that the algorithm distributes
the currently remaining energy over two to three it-
erations, thus incurring only minimal overhead. The
numerical solution runs for more than 1 sec and is con-
sidered impractical for large mining tasks.

10.2 Mining in the compressed domain

We evaluate the quality of mining operations when
operating directly on the compressed data. We com-
pare with techniques based on PCA and Random-
Projections.

Which distance proxy?: While techniques based on PCA
and RP provide only a single distance estimate in the
compressed domain, our approach provides both a
lower and an upper bound. Earlier, we explained that
one can use one of three potential proxies for the dis-
tance: the upper bound ub, the lower bound `b, or
the average of the two. So, first, we evaluate which of
the three metrics provides better distance estimation
using a k-NN task on the weblog dataset. Figure 10
shows how much large a percentage of the common k-
NN objects is returned in the compressed domain, ver-
sus those we would have gotten on the uncompressed
data. The experiment is conducted under increasing
number of coefficients. One can observe that the aver-
age of the lower and upper bounds shows overall su-
perior performance, and this is the distance proxy we
use for the remaining of the experiments.

k-NN performance: As mentioned, we perform com-
parisons under fair settings. Each object under our
methodology is represented using r =

⌈
2s+ s

2 + 1
⌉

dou-
ble variables using s coefficients in the Fourier ba-
sis. To compress each object using RP-based or PCA-
based k-NN, we project each sequence onto d dimen-

sions such that the resulting low-dimensional projec-
tion point does not exceed the memory size of r double
values. The random matrices Φ in the RP-based k-NN
are universally near-isometric; i.e., with high probabil-
ity, the same Φ matrix serves as a good linear map for
any input signal, the creation of Φ ’s is performed once
offline for each case; thus, we assume that this opera-
tion requires O(1) time and space complexity.

Figure 11 displays the results, averaged over 100
queries. Naturally, the PCA-based k-NN approach re-
turns the best results because it uses all the data to
construct the appropriate basis on which to project
the data. However, it requires the computation of a
Singular Value or Eigenvalue Decomposition, a O(dN )
(using Krylov power methods [48]) and O(d2N ) time
complexity operation in the most favorable and aver-
age scenario, respectively.

Sacrificing accuracy for low complexity, the RP-
based approaches constitute inexpensive solutions:
constructing matrix Φ is easy in practice, while
binary-based matrix ensembles, such as BRP or ARP

matrices, constitute low space-complexity alterna-
tives. However, RP-based schemes are probabilistic in
nature; they might “break down” for a fixed Φ : one
can construct adversarial inputs where their perfor-
mance degrades significantly.

Our methodology presents a balanced approach
with low time and space complexity, while retaining
high accuracy of results. Our approach exhibits better
performance over all compression rates, compared to
the RP-based approaches, see in Figure 11.

When sparsity is present: Using a similar methodology
as in the previous section, we test the k-NN perfor-
mance of the various approaches when sparsity of the
signals is present. We create sparse representations of
the weblog data by subsampling their Fourier repre-
sentation. Figure 12 illustrates the quality of k-NN us-
ing such a sparsified dataset. Per Φ ∈ C

d×N matrix
in the RP-based and the PCA-based k-NN, we project
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Fig. 10: Comparison of distance-estimation metrics for the k-NN task using the weblog data. The bars depict
mean values of 100 Monte Carlo iterations.
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Fig. 11: Comparison of the algorithms under consideration for the k-NN task, where X(i)/x(i) is originally dense.
The curves depict mean values of 100 Monte Carlo iterations.
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Fig. 12: Comparison of the algorithms under consideration for the k-NN task, where each weblog sequence is
sparsified to contain only 3s coefficients, where s = {16,32,64}. The curves depict mean values of 100 Monte
Carlo iterations.

each weblog signal onto a d-dimensional (complex val-
ued) space, where d = ds+ s

4 + 1
2 e.

Figure 12 reveals a notable behavior of our model:
When X(i) is sparse, each X(i) can be more accurately
represented (and thus compressed) using fewer coeffi-
cients. Thus, on average, the energy discarded ex is also

limited. Alternatively put, the constraint
∑
l∈p−x |X

(i)
l |

2 ≤
ex in (1) highly restricts the candidate space that the un-
compressed signal x(i) resides in, resulting in tighter up-
per and lower bounds. On the other hand, when com-
pressing dense X(i)’s into s coefficients, where s � N ,

ex provides a large amount of uncertainty as to the
reconstruction of x(i). This leads to less tight distance
bounds and thus degraded performance.

In summary, under high data-sparsity, our ap-
proach provides superior results in revealing the true
k-NNs in the uncompressed domain. Our approach
even outperforms PCA-based techniques, and more
importantly, our method has a very low computational
cost.

Clustering quality: We assess the quality of k-Means
clustering operations in the compressed domain using
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the original weblog dataset. The quality is evaluated
in terms of how similar the clusters are before and af-
ter compression when k-Means is initialized using the
same seed points. So, we use the same centroid points
C(t) as in the uncompressed domain and then com-
press each C(t) accordingly, using the dimensionality
reduction strategy dictated by each algorithm.

The quality results of the algorithms under com-
parison are depicted in Figure 13. We perform k-
Means for different compression ratios (coefficients)
and for different numbers of clusters k. The PCA-
based approach returns the best performance, but in-
troduces very large computational demands due to
SVD/Eigenvalue computation. The performance of
our methodology lies in-between PCA and Random-
Projection techniques.

10.3 Using a different basis (wavelets)

In the preceding sections we used Fourier decomposi-
tion as our compression method. Now we use wavelets
[49] to show the generality of our technique. We also
use a very large image dataset consisting of VLSI pat-
terns obtained by the semiconductor department of
our organization.

In the remainder of this subsection we (i) provide
an overview of the tasks and challenges related to the
specific domain and, (ii) show the performance of k-
NN search operations on this large real-world dataset.

Pattern detection on VLSIs: During the production of
VLSI circuits (i.e., CPUs), a series of parameters and
design protocols should be satisfied to ensure that the
resulting product will not fail during the manufac-
turing process. For example, there are various layouts
configurations, that have been known to cause short-
circuits and jeopardize the reliability of a circuit. The
absence of such artifacts guarantees that the circuit
will connect as desired and ensures a margin of safety.
A nonexhaustive list of parameters includes the width
of metal wires, minimum distances between two adja-
cent objects, etc. We refer the reader to Figure 14 for
some illustrations. Design-rule checking (DRC) is the
process of checking the satisfiability of these rules.

As a result of a testing process, a collection of
VLSI designs are annotated as faulty or functional.
Now, each newly-produced circuit layout is classified
as potentially-faulty based on its similarity to an al-
ready annotated circuit. Novel designs, never seen be-
fore, need to be tested further. Therefore, the testing
process can be relegated to a k-NN search operation.
The whole process needs to be both expedient and

accurate, so that design and production are properly
streamlined.

Based on an algebra of polygons [51], a strategy to
compare different layouts is by projecting their binary,
2D description onto one of the axes. This generates a
descriptive vector per layout as the summary scanned
from left to right or from top to bottom, see Figure 14.
Thus, each VLSI layout can be approximately (but not
uniquely) represented by a signature as the sum along
rows or columns. Note that not only this format can
be stored and processed more efficiently, but it also
allows a translation-invariant matching of the shape.
One can use both row-wise and column-wise signa-
tures, but for the purposes of our experiments, we only
use the column-wise signature.

VLSI dataset: Our original dataset consists of approx-
imately 150,000 binary VLSI images, each of dimen-
sion 512x512. We convert each image into a signature
`(i) ∈ R512,∀i, as the column-sum of each image. Fig-
ure 15 depicts an instance of a layout image and its
resulting signature.

Afterwards, we compress each signature using the
wavelet transformation [49]:

L(i) = WVL
(
`(i)

)
∈R512,∀i,

where WVL (·) represents the wavelet linear operator
with minimum scale Jmin = 2. Observe in the right
part of Figure 15 that L(i) is highly compressible: the
energies of wavelet components decay rapidly to zero
according to a power-law decay model of the form:∣∣∣∣∣(L(i)

)
j

∣∣∣∣∣ ≤ R · j1/p, R > 0,∀j, (14)

for some r and p. This suggests that each signature is
highly compressible with minimal loss in accuracy.

k-NN results on VLSI layouts: We evaluate the quality
of the results of k-NN operations in the compressed
domain as compared to the k-NN results when oper-
ating on the uncompressed image data. We limit our
evaluation to comparing our methodology to Random-
Projection techniques, since only these approaches are
scalable for large datasets.

Figure 16 illustrates the performance of the fol-
lowing approaches: (i) RP-based k-NN for three dif-
ferent random matrix ensembles (Gaussian, Bernoulli
and Achlioptas’ based) and (ii) our Optimal Bounds

approach. We observe that our method can improve
the relative efficiency of matching by up to 20%, com-
pared with the best random-projection approach. Fi-
nally, Figure 17 provides some representative exam-
ples of the k = 5 nearest neighbors for four randomly
selected queries. Using the layout signature derived,
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Fig. 13: Assessing the quality of k-Means clustering in the compressed domain.

Fig. 14: Left: Subset of design parameters to be satisfied during the manufacturing [50]. Width and spacing
are single layer rules, where the VLSI layout is seen as a 2D object. A width rule specifies the minimum width
of objects; a spacing rule specifies the minimum distance between two adjacent objects. Enclosing deals with
multi-layer rules is not considered here. Right: In the left-to-right scanning strategy, moving a vertical scan line
horizontally across the layout, we can maintain the sum of polygons observed. As the scan line advances, new
objects are added and old ones are removed.
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Fig. 15: Left panel: Original 2D layout example. White areas indicate the presence of objects, e.g., metal wires.
Center panel: Column-sum representation of polygons in R

512. Right panel: Amplitude of wavelet transforma-
tion on the column-sum representation: the majority of the energy can be captured in only a few coefficients.
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Fig. 16: k-NN preservation performance as function of k. Here, the cardinality of DBr is |V | = 149,245 and the
byte size of each sequence is d bytes.
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Fig. 17: Illustrative examples of the Optimal Bounds approach performance for the k-NN problem. The leftmost
images are the query images, and on the right we depict the k = 5 nearest neighbors as computed in the com-
pressed domain. Observe that owing to the signature extracted from each image, we can also detect translation-
invariant matches.

we can discover very flexible translation-invariant
matches.

Clustering quality on VLSI layouts: We assess the qual-
ity of k-Means clustering operations in the compressed
domain. As before, the quality is evaluated as to how
similar the clusters are before and after compres-

sion when k-Means is initialized using the same seed
points. So, we use the same centroid points C(t) as
in the uncompressed domain and then compress each
C(t) accordingly, using the dimensionality reduction
strategy dictated by each algorithm. Again, we con-
sider the k-Means algorithm as our baseline proce-
dure.
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Fig. 18: Clustering preservation performance as function of the number of coefficients s. RP-based approaches
project onto a d-dimensional subspace, where d = d2s+ s

2 + 1e. Here, the cardinality of the dataset is |V | = 50,000
and the byte size of each sequence is d bytes.

Figure 18 depicts the results for three clustering
levels k: 5, 10 and, 20 clusters. We perform k-Means
for different compression ratios (coefficients) in the
range s = {4,8,16,32,64,128}. We evaluate how strong
the distortion in clustering assignment is when oper-
ating in the compressed domain compared witg the
clustering on the original data. For all cases, our ap-
proach provides cluster output that aligns better with
the original clustering. For this dataset we observe a
consistent 5− 10% improvement in the cluster quality
returned. These trends are captured in Fig. 18.

In summary, the above experiments have provided
strong evidence that our methodology can offer bet-
ter mining quality in the compressed domain than
random projection techniques, both in the traditional
and in the compressed-sensing sense (i.e., high data-
sparsity). Finally, because our approach is also very
fast to compute (e.g. compared with PCA), we believe
that it will provide an important building block for
transitioning many mining operations into the com-
pressed data space.

10.4 Indexing

In this final section we discuss how the proposed rep-
resentation and distance estimation scheme can be
leveraged for indexing. The preceding experiments
have suggested that:

– The proposed representation can exploit patterns
in the dataset to achieve high compression. This
will result in a smaller index size.

– The distance estimation (lower-, upper-bounds) are
tighter than competitive techniques. This eventu-
ally leads to better pruning power during search.

Note that using the presented variable coefficient
representation traditional space-partitioning indices,

such as R-trees or KD-trees, cannot be used. This is be-
cause such techniques assume that each object is rep-
resented by the same set of coefficients, whereas our
technique may use: a) potentially disjoint sets of coef-
ficients per object and/or b) variable number of coeffi-
cients per object.

Our representation can be indexed using met-
ric trees which create a hierarchical organization of
the compressed objects based on their respective dis-
tances. In previous work we have shown how VP-trees
(a variant of metric trees) can be used to index repre-
sentations that use variable sets of coefficients [11]. A
VP-tree is constructed by recursively partitioning the
objects according to their distance to some selected
objects. These objects are called vantage points (VP),
and are selected in such a way so that they provide
a good separation of the currently examined subset of
the dataset. Search and pruning of the tree is facili-
tated using triangle inequality. Queries are compared
with the vantage point at the current tree level, and
search is directed towards the most promising part
of the tree. Parts of the tree that are provably out-
side the search scope (invoking triangle inequality) are
pruned from examination. For additional details the
interested reader can consult [11].

Indexing setup: We use three instances from the VLSI
dataset: with 10K, 20K and 50K objects, compressed
using wavelet coefficients. Objects are represented in
the compressed domain using s = 4, s = 8 and s = 16
coefficients per object. We use 100 objects as queries,
which are not the same as the indexed objects.

To construct and search the tree on the compressed
objects we use the presented double-waterfilling al-
gorithm. The algorithm is used to compute distances
both between objects for the tree construction phase,
as well as for computing distances between the query
posed and the tree’s vantage points. There are two
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Fig. 19: Pruning power of a VP-tree index when using the proposed object representation and double-waterfilling
distance estimation. Top row: conservative pruning. Bottom row: aggressive pruning.

search and pruning strategies one can follow: a con-
servative and an aggressive pruning strategy. For the
conservative strategy both lower and upper bounds
(double-waterfilling process) from the query to each
vantage point are used to navigate the tree and prune
nodes. For the aggressive pruning strategy only the av-
erage distance (ul + lb)/2 is used as the distance proxy
between the query and a vantage point. The aggres-
sive strategy achieves greater pruning but this results
in slightly lower precision compared to the conserva-
tive strategy. However the precision of the aggressive
search is still kept at very levels, ranging from 75−90%
across all experiments.

In Figure 19 we report the pruning power achieved
with the use of the index for both conservative and
aggressive pruning strategies. Pruning power is eval-
uated as the number of leaves accessed over the total
number of objects in the index. We calculate the prun-
ing power when running 1NN, 5NN and 10NN (Near-
est Neighbor) search on the query objects. One can see
that with the use of indexing we can refrain from ex-
amining a very big part of the dataset, with the prun-
ing consistently exceeding 90%. It is important to note
that the pruning power grows for increasing dataset
sizes.

11 Conclusion

We have examined how to compute optimally-tight
distance bounds on compressed data representations
under any orthonormal transform. We have demon-
strated that our methodology can retrieve more rele-
vant matches than competing approaches during min-
ing operations on the compressed data. A particularly
interesting result is that for data with very high re-
dundancy/sparsity (see, for example, magnetic reso-
nance imaging [37]), our approach may even provide
better search performance than compressed sensing
approaches, which have been designed to specifically
tackle the sparsity issue. In such scenarios, our method
may even outperform PCA-based techniques, owing to
its capability to use different sets of high-energy coef-
ficients per object.

As future work, we intend to continue to investi-
gate the merits of our methodology under a broader
variety of distance-based operations such as anomaly
detection and density-based clustering.
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12 Appendix

12.1 Existence of solutions and necessary and
sufficient conditions for optimality

The constraint set is a compact convex set, in fact, a
compact polyhedron. The function g(x,y) := −

√
x
√
y is

convex but not strictly convex on R
2
+. To see this, note

that the Hessian exists for all x,y > 0 and equals

O2g =
1
4

 x− 3
2 y−

1
2 −x−

1
2 y−

1
2

−x−
1
2 y−

1
2 x−

1
2 y−

3
2


with eigenvalues 0, 1√

xy ( 1
x + 1

y ), and hence is positive
semi-definite, which in turn implies that g is convex
[31]. Furthermore, −

√
x is a strictly convex function of

x so that the objective function of (3) is convex, and
strictly convex only if p−x ∩ p−q = ∅. It is also a continu-
ous function so solutions exist, i.e., the optimal value

is bounded and is attained. It is easy to check that
the Slater condition holds, whence the problem satis-
fies strong duality and there exist Lagrange multipli-
ers [31]. We skip the technical details for simplicity,
but we want to highlight that this property is crucial
because it guarantees that the Karush–Kuhn–Tucker
(KKT) necessary conditions [31] for Lagrangian opti-
mality are also sufficient. Therefore, if we can find a
solution that satisfies the KKT conditions for the prob-
lem, we have found an exact optimal solution and the
exact optimal value of the problem. The Lagrangian is
L(y,z,λ,µ,α,β) := −2

∑
i∈P1

bi
√
zi − 2

∑
i∈P2

ai
√
yi − 2

∑
i∈P3

√
zi
√
yi (A-1)

+λ
(∑
i∈p−x

(zi − ex)
)

+µ
(∑
i∈p−q

(yi − eq)
)

+
∑
i∈p−x

αi (zi −Z) +
∑
i∈p−q

βi (yi −Y ) .

The KKT conditions are as follows6:

0 ≤ zi ≤ Z, 0 ≤ yi ≤ Y , (PF) (A-2a)∑
i∈p−x

zi ≤ ex ,
∑
i∈p−x

zi ≤ eQ

λ,µ,αi ,βi ≥ 0 (DF) (A-2b)

αi (zi −Z) = 0, βi (yi −Y ) = 0 (CS) (A-2c)

λ
(∑
i∈p−x

(zi − ex)
)

= 0, µ
(∑
i∈p−q

(yi − eq)
)

= 0

i ∈ P1 :
∂L
∂zi

= − bi√
zi

+λ+αi = 0 (O) (A-2d)

i ∈ P2 :
∂L
∂yi

= − ai√
yi

+µ+ βi = 0

i ∈ P3 :
∂L
∂zi

= −
√
yi√
zi

+λ+αi = 0

∂L
∂yi

= −
√
zi√
yi

+µ+ βi = 0 ,

where we use shorthand notation for Primal Feasibil-
ity (PF), Dual Feasibility (DF), Complementary Slackness
(CS), and Optimality (O) [31].

12.2 Proof of theorem 1

For the first part, note that problem (3) is a double
minimization problem over {zi}i∈p−x and {yi}i∈p−q . If we
fix one vector in the objective function of (3), then the
optimal solution with respect to the other one is given
by the waterfilling algorithm. In fact, if we consider
the KKT conditions (A-2) or the KKT conditions to (2),
they correspond exactly to (7). The waterfilling algo-
rithm has the property that if a = waterfill (b, ex,A),
then bi > 0 implies ai > 0. Furthermore, it has a mono-
tonicity property in the sense that bi ≤ bj implies
ai ≤ aj . Assume that, at optimality, al1 < al2 for some

6 The condition (A-2d) excludes the cases that for some i zi =
0, or yi = 0, which will be treated separately.
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l1 ∈ P1, l2 ∈ P3. Because bl1 ≥ B ≥ bl3 we can swap these
two values to decrease the objective function, which is
a contradiction. The exact same argument applies for
{bl}, so minl∈P1

al ≥maxl∈P3
al ,minl∈P2

bl ≥maxl∈P3
bl .

For the second part, note that −
∑
i∈P3

√
zi
√
yi ≥

−
√
e′x

√
e′q. If e′xe

′
q > 0, then at optimality this is attained

with equality for the particular choice of {al ,bl}l∈P3
.

It follows that all entries of the optimal solution
{al ,bl}l∈p−x∪p−q are strictly positive, hence (A-2d) implies
that

ai =
bi

λ+αi
, i ∈ P1 (A-3a)

bi =
ai

µ+ βi
, i ∈ P2 (A-3b)

ai = (µ+ βi)bi , i ∈ P3 (A-3c)

bi = (λ+αi)ai , i ∈ P3.

For the particular solution with all entries in

P3 equal
(
al =

√
e′x/ |P3|,bl =

√
e′q/ |P3|

)
, (8a) is an im-

mediate application of (A-3.c). The optimal entries
{al}l∈P1

, {bl}l∈P2
are provided by waterfilling with avail-

able energies ex − e′x, eq − e′q, respectively, so (9) imme-
diately follows.

For the third part, note that the cases that either
e′x = 0, e′q > 0 or e′x > 0, e′q = 0 are excluded at optimality
by the first part, cf. (7).

For the last part, note that when e′x = e′q = 0, equiv-
alently al = bl = 0 for l ∈ P3, it is not possible to take
derivatives with respect to any coefficient in P3, so the
last two equations of (A-2) do not hold. In that case,
we need to perform a standard perturbation analy-
sis. Let ε := {εl}l∈P1∪P2

be a sufficiently small positive
vector. As the constraint set of (3) is linear in zi , yi ,
any feasible direction (of potential decrease of the ob-
jective function) is of the form zi ← zi − εi , i ∈ P1,
yi ← yi − εi , i ∈ P2, and zi , yi ≥ 0, i ∈ P3 such that∑
i∈P3

zi =
∑
i∈P1

εi ,
∑
i∈P3

yi =
∑
i∈P2

εi . The change in the
objective function is then equal to (modulo an o(||ε ||2)
term)

g(ε) ≈ 1
2

∑
i∈P1

bi√
zi
εi +

1
2

∑
i∈P2

ai√
yi
εi −

∑
i∈P3

√
zi
√
yi (A-4)

≥ 1
2

∑
i∈P1

bi√
zi
εi +

1
2

∑
i∈P2

ai√
yi
εi −

√∑
i∈P1

εi

√∑
i∈P2

εi

≥ 1
2

min
i∈P1

bi√
zi
ε1 +

1
2

min
i∈P2

ai√
yi
ε2 −
√
ε1ε2,

where the first inequality follows from an application
of the Cauchy–Schwartz inequality to the last term,
and in the second one we have defined εj =

∑
i∈Pj εi , i =

1,2. Let us define ε :=
√
ε1/ε2. From the last expres-

sion, it suffices to test for any i ∈ P1, j ∈ P2:

g(ε1,ε2) =
1
2
bi√
zi
ε1 +

1
2

aj
√
yj
ε2 −
√
ε1
√
ε2 =

1
2
√
ε1
√
ε2g1(ε) (A-5)

g1(ε) :=
bi√
zi
ε+

aj
√
yj

1
ε
− 2 ≥ 1

ε
g2(ε)

g2(ε) :=
bi
A
ε2 − 2ε+

ai
B
,

where the inequality above follows from the fact that√
zi ≤ A,i ∈ P1 and

√
yi ≤ B, i ∈ P2. Note that h(ε) is a

quadratic with a nonpositive discriminant ∆ := 4(1 −
aibi
AB ) ≤ 0 as, by definition, we have that B ≤ bi , i ∈ P1

and A ≤ ai , i ∈ P2. Therefore g(ε1,ε2) ≥ 0 for any (ε1,ε2)
both positive and sufficiently small, which is a neces-
sary condition for local optimality. By convexity, the
vector pair (a,b) obtained constitutes an optimal solu-
tion. �

12.3 Energy allocation in double-waterfilling

Calculating a fixed point of T is of interest only if
e′xe
′
q > 0 at optimality. We know that we are not in the

setup of Theorem 1.4, therefore we have the additional
property that either ex > |P1|A2, eq > |P2|B2 or both. Let
us define

γa := inf
{
γ > 0 :

∑
l∈P2

min
(
a2
l

1
γ
,B2

)
≤ eq

}
(A-6)

γb := sup
{
γ ≥ 0 :

∑
l∈P1

min
(
b2
l γ,A

2
)
≤ ex

}
.

Clearly if ex > |P1|A2 then γb = +∞, and for any γ ≥
maxl∈P1

A2

b2
l

we have
∑
l∈P1

min(b2
l γ,A

2) = |P1|A2. Sim-

ilarly, if eq > |P2|B2 then γa = 0, and for any γ ≤

minl∈P2

a2
l
B2 we have

∑
l∈P2

min(a2
l

1
γ ,B

2) = |P2|B2. If γb <
+∞, we can find the exact value of γb analytically by

sorting {γ (b)
l := A2

b2
l
}l∈P1

, –i.e., by sorting {b2
l }P1

in de-

creasing order–and considering

hb(γ) :=
∑
l∈P1

min(b2
l γ

(b)
i ,A2)− ex

and vi := hb(γ
(b)
i ). In this case, v1 < . . . < v|P1 |, and

v|P1 | > 0, and there are two possibilities: 1) v1 > 0

whence γb < γ
(b)
1 , or 2) there exists some i such that

vi < 0 < vi+1 whence γ (b)
i < γb < γ

(b)
i+1. For both ranges

of γ , the function h becomes linear and strictly increas-
ing, and it is elementary to compute its root γb. A sim-
ilar argument applies for calculating γa if γa is strictly
positive, by defining

ha :=
∑
l∈P2

min
(
a2
l

1
γ
,B2

)
− eq

.



Compressive Mining 25

0 1 2 3 4
−160

−150

−140

−130

γ

h
a
(γ

)

Function h
a
(γ)

0 0.2 0.4 0.6 0.8
−140

−135

−130

−125

−120

γ
h

b
(γ

)

Function h
b
(γ)

0 1 2 3 4
−2

0

2

4

γ

h
(γ

)

Function h(γ)

0 1 2 3 4
−1.1

−1

−0.9

−0.8

−0.7

γ

h
(γ

)−
γ

Function h(γ) − γ

Fig. 20: Plot of functions ha,hb,h. Top row: ha is a
bounded decreasing function, which is piecewise lin-
ear in 1

γ with nonincreasing slope in 1
γ ; hb is a bounded

increasing piecewise linear function of γ with nonin-
creasing slope. Bottom row: h is an increasing func-
tion; the linear term γ dominates the fraction term,
which is also increasing, see bottom right.

Theorem 2 (Exact solution of (9))
If either ex > |P1|A2, eq > |P2|B2 or both, then the nonlinear
mapping T has a unique fixed point (e′x, e

′
q) with e′x, e

′
q > 0.

The equation

ex −
∑
l∈P1

min(b2
l γ,A

2)

eq −
∑
l∈P2

min(a2
l

1
γ ,B

2)
= γ (A-7)

has a unique solution γ̄ with γa ≤ γ̄ and γa ≤ γb when
γb < +∞. The unique fixed point of T (solution of (9))
satisfies

e′x = ex −
∑
l∈P1

min
(
b2
l γ̄ ,A

2
)

(A-8)

e′q = eq −
∑
l∈P2

min
(
a2
l

1
γ̄
,B2

)
.

Proof Existence7 of a fixed point is guaranteed by ex-
istence of solutions and Lagrange multiplies for (3), as
by assumption we are in the setup of Theorem 1.2. De-
fine γ := e′x

e′q
; a fixed point (e′x, e

′
q) = T ((e′x, e

′
q)), e

′
x, e
′
q > 0,

corresponds to a root of

h(γ) := −
ex −

∑
l∈P1

min(b2
l γ,A

2)

eq −
∑
l∈P2

min(a2
l

1
γ ,B

2)
+γ (A-9)

7 An alternative and more direct approach of establishing the
existence of a fixed point is by considering all possible cases and
defining an appropriate compact convex set E ⊂R

2
+\(0,0) so that

T (E) ⊂ E, whence existence follows by the Brower’s fixed point
theorem [33], as T is continuous.

For the range γ ≥ γa and γ ≤ γb, if γb < +∞, we have
that h(γ) is continuous and strictly increasing. The fact
that limγ↘γa h(γ) < 0, limγ↗γb h(γ) > 0 shows the exis-
tence of a unique root γ̄ of h corresponding to a unique
fixed point of T , cf. (A-8). �

Remark 5 (Exact calculation of a root of h) We seek to
calculate the root of h exactly and efficiently. In doing
so, consider the points {γl}l∈P1∪P2

, where γl := A
b2
l
, l ∈

P1, γl :=
a2
l
B , l ∈ P2. Then, note that for any γ ≥ γl , l ∈ P1

we have that min(b2
l γ,A

2) = A2. Similarly, for any
γ ≤ γl , l ∈ P2, we have that min(a2

l
1
γ ,B

2) = B2. We or-
der all such points in increasing order, and consider
the resulting vector γ ′ := {γ ′i } excluding any points be-
low γa or above γb. Let us define hi := h(γ ′i ). If for some
i, hi = 0 we are done. Otherwise there are three possi-
bilities: 1) there is an i such that hi < 0 < hi+1; 2) h1 > 0,
or 3) hN < 0. In all cases, the numerator (denominator)
of h is linear in γ ( 1

γ ) for the respective range of γ .
Therefore, γ̄ is obtained by solving the linear equation

f (γ) := ex−
∑
l∈P1

min(b2
l γ,A

2)−γ

eq −∑
l∈P2

min
(
a2
l

1
γ
,B2

) .
(A-10)

Note that there is no need for further computation to
set this into the form f (γ) = αγ + β for some α,β. In-
stead, we use the elementary property that a linear
function f on [x0,x1] with f (x0)f (x1) < 0 has a unique
root given by

x̄ = x0 −
x1 − x0

f (x1)− f (x0)
f (x0) .


