With co-organizers Albert Berahas, Michael Mahoney and Fred Roosta, our workshop on optimization methods for ML has been accepted at NeurIPS 2019!
Please visit the official website for more information.
Description
Higher-order methods, such as Newton, quasi-Newton and adaptive gradient descent methods, are extensively used in many scientific and engineering domains. At least in theory, these methods possess several nice features: they exploit local curvature information to mitigate the effects of ill-conditioning, they avoid or diminish the need for hyper-parameter tuning, and they have enough concurrency to take advantage of distributed computing environments. Researchers have even developed stochastic versions of higher-order methods, that feature speed and scalability by incorporating curvature information in an economical and judicious manner. However, often higher-order methods are “undervalued.”
This workshop will attempt to shed light on this statement. Topics of interest include –but are not limited to– second-order methods, adaptive gradient descent methods, regularization techniques, as well as techniques based on higher-order derivatives. This workshop can bring machine learning and optimization researchers closer, in order to facilitate a discussion with regards to underlying questions such as the following:
- Why are they not omnipresent?
- Why are higher-order methods important in machine learning, and what advantages can they offer?
- What are their limitations and disadvantages?
- How should (or could) they be implemented in practice?
Call for Papers
We welcome submissions to the workshop under the general theme of “Beyond First-Order Optimization Methods in Machine Learning”. Topics of interest include, but are not limited to,
- Second-order methods
- Quasi-Newton methods
- Derivative-free methods
- Distributed methods beyond first-order
- Online methods beyond first-order
- Applications of methods beyond first-order to diverse applications (e.g., training deep neural networks, natural language processing, dictionary learning, etc)
We encourage submissions that are theoretical, empirical or both.
Submissions should be up to 4 pages excluding references, acknowledgements, and supplementary material, and should follow NeurIPS format. The CMT-based review process will be double-blind to avoid potential conflicts of interests; submit at https://cmt3.research.microsoft.com/OPTNeurIPS2019/. Accepted submissions will be presented as posters.
Important Dates:
- Submission deadline: September 13, 2019 (23:59 ET)
- Acceptance notification: September 27, 2019
Registration:
- Please refer to the NeurIPS website for registration details as they become available.
Poster:
- Please refer to NeurIPS website for registration details as they become available.